Metabolite accumulation in lysosomal storage disorders (LSDs) results in impaired cell function and multi-systemic disease. Although substrate reduction and lysosomal overload-decreasing therapies can ameliorate disease progression, the significance of lysosomal overload-independent mechanisms in the development of cellular dysfunction is unknown for most LSDs. Here, we identify a mechanism of impaired chaperone-mediated autophagy (CMA) in cystinosis, a LSD caused by defects in the cystine transporter cystinosin (CTNS) and characterized by cystine lysosomal accumulation. We show that, different from other LSDs, autophagosome number is increased, but macroautophagic flux is not impaired in cystinosis while mTOR activity is not affected. Conversely, the expression and localization of the CMA receptor LAMP2A are abnormal in CTNS-deficient cells and degradation of the CMA substrate GAPDH is defective in Ctns−/− mice. Importantly, cysteamine treatment, despite decreasing lysosomal overload, did not correct defective CMA in Ctns−/− mice or LAMP2A mislocalization in cystinotic cells, which was rescued by CTNS expression instead, suggesting that cystinosin is important for CMA activity. In conclusion, CMA impairment contributes to cell malfunction in cystinosis, highlighting the need for treatments complementary to current therapies that are based on decreasing lysosomal overload.
Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multi-systemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon co-culture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.
The lysosomal storage disease cystinosis, caused by cystinosin deficiency, is characterized by cell malfunction, tissue failure, and progressive renal injury despite cystine-depletion therapies. Cystinosis is associated with defects in chaperone-mediated autophagy (CMA), but the molecular mechanisms are incompletely understood. Here, we show CMA substrate accumulation in cystinotic kidney proximal tubule cells. We also found mislocalization of the CMA lysosomal receptor LAMP2A and impaired substrate translocation into the lysosome caused by defective CMA in cystinosis. The impaired LAMP2A trafficking and localization were rescued either by the expression of wild-type cystinosin or by the disease-associated point mutant CTNS-K280R, which has no cystine transporter activity. Defective LAMP2A trafficking in cystinosis was found to associate with decreased expression of the small GTPase Rab11 and the Rab7 effector RILP. Defective Rab11 trafficking in cystinosis was rescued by treatment with small-molecule CMA activators. RILP expression was restored by up-regulation of the transcription factor EB (TFEB), which was down-regulated in cystinosis. Although LAMP2A expression is independent of TFEB, TFEB up-regulation corrected lysosome distribution and lysosomal LAMP2A localization in cells but not Rab11 defects. The up-regulation of Rab11, Rab7, or RILP, but not its truncated form RILP-C33, rescued LAMP2A-defective trafficking in cystinosis, whereas dominant-negative Rab11 or Rab7 impaired LAMP2A trafficking. Treatment of cystinotic cells with a CMA activator increased LAMP2A localization at the lysosome and increased cell survival. Altogether, we show that LAMP2A trafficking is regulated by cystinosin, Rab11, and RILP and that CMA up-regulation is a potential clinically relevant mechanism to increase cell survival in cystinosis.
bCystinosis is a lysosomal storage disorder caused by the accumulation of the amino acid cystine due to genetic defects in the CTNS gene, which encodes cystinosin, the lysosomal cystine transporter. Although many cellular dysfunctions have been described in cystinosis, the mechanisms leading to these defects are not well understood. Here, we show that increased lysosomal overload induced by accumulated cystine leads to cellular abnormalities, including vesicular transport defects and increased endoplasmic reticulum (ER) stress, and that correction of lysosomal transport improves cellular function in cystinosis. We found that Rab27a was expressed in proximal tubular cells (PTCs) and partially colocalized with the lysosomal marker LAMP-1. The expression of Rab27a but not other small GTPases, including Rab3 and Rab7, was downregulated in kidneys from Ctns ؊/؊ mice and in human PTCs from cystinotic patients. Using total internal reflection fluorescence microscopy, we found that lysosomal transport is impaired in Ctns ؊/؊ cells. Ctns ؊/؊ cells showed significant ER expansion and a marked increase in the unfolded protein response-induced chaperones Grp78 and Grp94. Upregulation of the Rab27a-dependent vesicular trafficking mechanisms rescued the defective lysosomal transport phenotype and reduced ER stress in cystinotic cells. Importantly, reconstitution of lysosomal transport mediated by Rab27a led to decreased lysosomal overload, manifested as reduced cystine cellular content. Our data suggest that upregulation of the Rab27a-dependent lysosomal trafficking and secretory pathways contributes to the correction of some of the cellular defects induced by lysosomal overload in cystinosis, including ER stress.
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in all tissues and leads to organ damage including end-stage renal disease. Using the Ctns(-/-) murine model for cystinosis, we tested the use of hematopoietic stem and progenitor cells (HSPC) genetically modified to express a functional CTNS transgene using a self-inactivating-lentiviral vector (SIN-LV). We showed that transduced cells were capable of decreasing cystine content in all tissues and improved kidney function. Transduced HSPC retained their differentiative capabilities, populating all tissue compartments examined and allowing long-term expression of the transgene. Direct correlation between the levels of lentiviral DNA present in the peripheral blood and the levels present in tissues were demonstrated, which could be useful to follow future patients. Using a new model of cystinosis, the DsRed Ctns(-/-) mice, and a LV driving the expression of the fusion protein cystinosin-enhanced green fluorescent protein (eGFP), we showed that cystinosin was transferred from CTNS-expressing cells to Ctns-deficient adjacent cells in vitro and in vivo. This transfer led to cystine decreases in Ctns-deficient cells in vitro. These data suggest that the mechanism of cross-correction is possible in cystinosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.