In this paper we present StimCards: an interactive game for cognitive training exercises. To increase the impact of this game we experiment four kinds of interfaces: a basic computer, an embodied conversational agent and a robot with two different appearances. The report of these experiments shows that the robot is the best positive feedback for cognitive game.
Abstract-This paper presents a robust and anticipative realtime gesture recognition and its motion quality analysis module. By utilizing a motion capture device, the system recognizes gestures performed by a human, where the recognition process is based on skeleton analysis and motion features computation. Gestures are collected from a single person. Skeleton joints are used to compute features which are stored in a reference database, and Principal Component Analysis (PCA) is computed to select the most important features, useful in discriminating gestures. During real-time recognition, using distance measures, real-time selected features are compared to the reference database to find the most similar gesture. Our evaluation results show that: i) recognition delay is similar to human recognition delay, ii) our module can recognize several gestures performed by different people and is morphology-independent, and iii) recognition rate is high: all gestures are recognized during gesture stroke. Results also show performance limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.