The supplementation with Lactobacillus sakei as probiotic on the ileal and cecal microbiota of mule ducks during overfeeding was investigated using high-throughput 16S rRNA gene-based pyrosequencing and real-time PCR. The ducks were overfed with or without L. sakei for 12 d with 56% ground corn and 42% whole corn. Samples were collected before the overfeeding period (at 12 wk), at 13 wk (meal 12 of overfeeding), and at 14 wk (meal 24), 3 h postfeeding. Whatever the digestive segment and the level of intake, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in the bacterial community of mule ducks (at least 90%). Before overfeeding, ileal samples were dominated by Clostridia, Bacteroidia, and Gammaproteobacteria (80% and up), and cecal samples by Bacteroidia and Clostridia (around 85%). The richness and diversity decreased in the ileum and increased in the ceca after overfeeding. Overfeeding increased the relative abundance of Firmicutes and especially the Lactobacillus group in ileal samples. Nonmetric multidimensional scaling profiles separated the bacterial communities with respect to overfeeding only in cecal samples. Richness indicators decreased after L. sakei has been added at mid-overfeeding only in the ileum. In the ceca, the decrease of these indexes only occurred at the end of overfeeding. The addition of L. sakei triggers major changes in the ileum, whereas the ceca are not affected. Lactobacillus sakei decreased the relative abundance of Bacteroides at mid-overfeeding and the relative abundance of Enterobacteria at the end of overfeeding in the ileum.
Toxic effects among fumonisins B (FB), deoxynivalenol (DON) and zearalenone (ZEN) administered alone and combined were investigated in 84-day-old ducks during force-feeding. 75 male ducks, divided into five groups of 15 animals, received daily during the meal a capsule containing the desired among of toxin. Treated animals received dietary levels of toxins equivalent to 20 mg FB1+FB2/kg (FB), 5 mg DON/kg (DON), 0.5 mg ZEN/kg (ZEN) and 20, 5 and 0.5 mg/kg of FB, DON and ZEN (FBDONZEN), respectively. Control birds received capsules with no toxin. After 12 days, a decrease in body weight gain accompanied by an increase in the feed conversion ratio was observed in ducks exposed to FBDONZEN, whereas there was no effect on performances in ducks exposed to FB, DON and ZEN separately. No difference among groups was observed in relative organ weight, biochemistry, histopathology and several variables used to measure oxidative damage and testicular function. A sphinganine to sphingosine ratio of 0.32, 1.19 and 1.04, was measured in liver in controls and in ducks exposed to FB and FBDONZEN, respectively. Concentrations of FB1 in liver were 13.34 and 15.4 ng/g in ducks exposed to FB and FBDONZEN, respectively. Together ZEN and its metabolites were measured after enzymatic hydrolysis of the conjugated forms. Mean concentrations of α-zearalenol in liver were 0.82 and 0.54 ng/g in ducks exposed to ZEN and FBDONZEN, respectively. β-zearalenol was 2.3-fold less abundant than α-zearalenol, whereas ZEN was only found in trace amounts. In conclusion, this study suggests that decreased performance may occur in ducks exposed to a combination of FB, DON and ZEN, but does not reveal any other interaction between mycotoxins in any of the other variables measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.