Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop a new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable 'local' center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.
Operando X-ray absorption spectroscopy (XAS) and
X-ray diffraction (XRD) were performed on a Co/TiO2 Fischer–Tropsch
synthesis (FTS) catalyst at 16 bar for (at least) 48 h time-on-stream
in both a synchrotron facility and a laboratory-based X-ray diffractometer.
Cobalt carbide formation was observed earlier during FTS with operando XAS than with XRD. This apparent discrepancy is
due to the higher sensitivity of XAS to a short-range order. Interestingly,
in both cases, the product formation does not noticeably change when
cobalt carbide formation is detected. This suggests that cobalt carbide
formation is not a major deactivation mechanism, as is often suggested
for FTS. Moreover, no cobalt oxide formation was detected by XAS or
XRD. In other words, one of the classical proposals invoked to explain
Co/TiO2 catalyst deactivation could not be supported by
our operando X-ray characterization data obtained
at close to industrially relevant reaction conditions. Furthermore,
a bimodal cobalt particle distribution was observed by high-angle
annular dark-field scanning transmission electron microscopy and energy-dispersive
X-ray analysis, while product formation remained relatively stable.
The bimodal distribution is most probably due to the mobility and
migration of the cobalt nanoparticles during FTS conditions.
High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were: Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.
In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150 nm), large branches (average diameter of 100 nm), and small branches (average diameter of sub-10 nm to sub-20 nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420 °C in argon produced single crystalline structures along ⟨311⟩ directions for the branches and along ⟨111⟩ for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.