In this work, the structural features and sensor response toward ammonia of a three dimensional (3D) SWCNTs material covalently functionalised with 1,6-diethynylpyrene were studied. The target SWCNTs hybrid material was prepared by the reaction of azido substituted SWCNTs with the 1,6-diethynylpyrene containing double terminal alkyne groups via the azide-alkyne Huisgen cycloaddition (Click) reaction. The structure of the 1,6-diethynylpyrene compound was determined by different spectroscopic methods such as FT-IR, 1 H-NMR, MALDI-TOF mass, fluorescence and UV-Visible, while its SWCNT-Pyrene 3D hybrid material was characterized by FT-IR, Raman, UV-Visible spectroscopies and thermogravimetric analysis. The morphology of the hybrid films was investigated by scanning electron microscope (SEM). The sensing performance of the SWCNT-Pyrene 3D hybrid material was studied against low-concentrations of NH 3 in the range of 0.1-40 ppm by measuring changes in the films' conductivity at different levels of relative humidity. The reversible electrical sensor response toward ammonia was observed both in the case of SWCNT and SWCNT-Pyrene 3D hybrid films however the response values of SWCNT-Pyrene 3D hybrid film were higher than those of SWCNT.
A novel type of phthalocyanine pentad containing four boron dipyrromethene (BODIPY) units at peripheral positions of the phthalocyanine framework has been designed and synthesized for the first time. The Sonogashira coupling reaction between 4,4'-difluoro-8-(4-ethynyl)-phenyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (Ethynyl-BODIPY) and 2(3),9(10),16(17),23(24)-tetrakis(iodo) zinc(ii) phthalocyanine (Iodo-Pc) has been used for the synthesis of the target compound. The BODIPY-phthalocyanine pentad dye (BODIPY-Pc) has been fully characterized by (1)H NMR, MALDI-TOF mass, FT-IR and UV-Vis spectroscopic techniques and elemental analysis as well. The photoinduced energy transfer process for this dye system was explored in tetrahydrofuran solution. The singlet oxygen generation capability and photodegradation behaviours of this BODIPY-Pc pentad dye were also investigated in DMSO for the determination of the usability of this new type of dye system as a photosensitizer in PDT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.