Forecasting of the wind speed and power generation for a wind farm has always been quite challenging and has importance in terms of balancing the electricity grid and preventing energy imbalance penalties. This study focuses on creating a hybrid model that uses both numerical weather prediction model and gradient boosting machines (GBM) for wind power generation forecast. Weather Research and Forecasting (WRF) model with a low spatial resolution is used to increase temporal resolutions of the computed new or existing variables whereas GBM is used for downscaling purposes. The results of the hybrid model have been compared with the outputs of a stand-alone WRF which is well configured in terms of physical schemes and has a high spatial resolution for Yahyalı wind farm over a complex terrain located in Turkey. Consequently, the superiority of the hybrid model in terms of both performance indicators and computational expense in detail is shown.
Short-term wind speed forecast model that uses both supervisory control and data acquisition (SCADA) based data and weather research and forecasting (WRF) model outputs for Urla wind power plant (WPP) has been proposed in this study. Two different WRF models were run to gather atmospheric variables from four surrounding grids of Urla WPP and calculate weather patterns affecting Urla WPP. After detecting outliers in the SCADA data by coupling of k-mean and isolation forest (IF) methods, statistical methods were used for data treatment and the outputs of WRF models were used for missing data imputation. The effect of each data type and data preprocessing techniques on the model was evaluated separately. The best model performance was achieved with 0.9085 [Formula: see text], and 0.81 MAE in the dataset which includes each data type and each data preprocessing was applied on. Otherwise, the dominant weather pattern affecting Urla WPP was found to be purely advective and the best result was achieved in this pattern.
A country-based day-ahead wind power generation forecast (WPGF) model with a grid selection algorithm and feature selection models was proposed in this study. Atmospheric variables extracted from 300, 500, 700 hPa pressure levels, and surface level of ERA5 reanalysis data with 2.5° spatial resolution were used to train/validate the categorical boosting (CatBoost) model. A special grid selection algorithm was proposed by considering Turkey’s spatial distribution of wind power plants. The day-ahead forecasts of ECMWF’s HRES (High-resolution) were used as the test subset, therefore, paving the way for the operational use of the model. The proposed model could be considered much as a specialized machine learning based downscaling method for country-based WPGF due to using numerical weather prediction model outputs as its input. Results showed that the proposed model that uses fewer features has outperformed the other models with a normalized root mean square error of 7.6% and coefficient of determination of 0.8989.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.