Objective: Impaired cognitive function has been demonstrated in adults with growth hormone (GH) deficiency (GHD) by using different neuropsychological tests. Despite several studies, present knowledge about the impact of GHD and GH replacement therapy (GHRT) on cognitive function is limited. P300 event-related potential (ERP) application is a well-established neurophysiological approach in the assessment of cognitive functions including the updating of working memory content and the speed of stimulus evaluation. GHD is a well-known feature of Sheehan's syndrome and cognitive changes due to GHD and the effects of GHRT remain to be clarified. The present study was designed to investigate the effects of GHD and 6 months of GHRT on cognitive function in patients with Sheehan's syndrome by using P300 latency. Design and methods: The study comprised 14 patients with Sheehan's syndrome (mean age, 49.5^7.8 years) and 10 age-, education-and sex-matched healthy controls. With hormone replacement therapy, basal hormone levels other than GH were stable before enrollment and throughout the GHRT. The diagnosis of GH deficiency was established by insulin-tolerance test (ITT), and mean peak level of GH in response to insulin hypoglycemia was 0.77^0.35 mIU/l. Treatment with GH was started at a dose of 0.45 IU (0.15 mg)/day in month 1, was increased to 0.9 IU (0.30 mg)/day in month 2 and was maintained at 2 IU (0.66 mg)/day. Initially baseline auditory ERPs in patients and controls were recorded at frontal (Fz), central (Cz), and parietal (P3 and P4) electrode sites. In the patient group, ERPs were re-evaluated after 6 months of GH replacement therapy. During each session P300 amplitude and latency were measured. Results: Mean serum insulin-like growth factor-I (IGF-I) concentration in the patient group before GHRT was 23^13 ng/ml. After 6 months of GH therapy mean IGF-I significantly increased to an acceptable level, 234^71 ng/ml (P , 0.05). The mean latencies (at all electrode sites) of the patients before GHRT were found to be significantly prolonged when compared with those of normal controls (P , 0.05). After 6 months of GHRT mean P300 latencies (at all electrode sites) were decreased significantly when compared with latencies before treatment (P , 0.05). Conclusions: The present study, using P300 ERP latencies, therefore suggests an impairment of cognitive abilities due to severe GHD in patients with Sheehan's syndrome and an improvement of cognitive function after 6 months of physiological GHRT. Moreover, this was a novel application of P300 ERP latencies in cognitive function detection in patients with GHD. Further studies with different patient groups need to be done to assess the clinical use of this electrophysiological method in the diagnosis of cognitive dysfunction due to GHD.
European Journal of Endocrinology 150 153-159
The results of experiments designed to show that inhibition of nitric oxide production in rats exposed to low lead levels increases vascular resistance, decreases renal blood flow and glomerular function, and enhances oxidative stress. Forty-five adult male Sprague-Dawley rats were divided into four groups. Group A was used as controls and consisted of rats that received no treatment; group B acted as NO-inhibited controls by receiving L-NAME (N(G)-nitro-l-arginine methyl ester) as the NO inhibitor; group C was injected intraperitoneally with 8 mg/kg lead acetate for 2 wk; and group D receiving lead acetate plus L-NAME. Compared to healthy controls, significant elevation of the mean (p<0.01), systolic (p<0.04), and diastolic (p<0.01) blood pressures was found in the lead-treated rats. The renal blood flow was 1550+/-468 blood per unit (bpu) in the controls, 488+/-220 bpu in the L-NAME controls, 1050+/-458 bpu in the lead-treated group, and 878+/-487 bpu in the Pb plus L-NAME group. Low-level lead exposure did not change the urinary flow rate, creatinine clearance, and the creatinine, potassium, phosphorus, glucose, and protein excretion in 24-h urine. In the lead plus NO-inhibited rats, a significant decrease in sodium ion excretion was observed (p<0.01). The NO levels of the lead exposed, L-NAME-treated controls, and L-NAME plus lead-exposed groups are significantly lower compared to untreated controls: p<0.002, p<0.001, and p<0.01, respectively. When compared to untreated controls, the plasma malondialdehyde levels were not significantly different in the lead exposed, lead plus L-NAME, and L-NAME control groups. These results suggest that lead-induced hypertension might be related to a decrease of NO and consequent vasoconstriction, rather than to a decrease of renal blood flow or to decreases in renal sodium.
Manipulations of thyroid hormones have been shown to influence learning and memory. Although a large body of literature is available on the effect of thyroid hormone deficiency on learning and memory functions during the developmental stage, electrophysiological and behavioural findings, particularly on propylthiouracil administration to adult normothyroid animals, are not satisfactory. The experiments in the present study were carried out on 12 adult male Wistar rats aged 6-7 months. Hypothyroidism was induced by administering 6-n-propyl-2-thiouracil in their drinking water for 21 days at a concentration of 0.05%. The spatial learning performance of hypothyroid and control rats was studied on a Y-maze. The rats were then placed in a stereotaxic frame under urethane anaesthesia. A bipolar tungsten electrode was used to stimulate the medial perforant path. A glass micropipette was inserted into the granule cell layer of the ipsilateral dentate gyrus to record field excitatory post-synaptic potentials. After a 15-min baseline recording of field potentials, long-term potentiation was induced by four sets of tetanic trains. The propylthiouracil-treated rats showed a significantly attenuated input-output (I/O) relationship when population spike (PS) amplitudes and field excitatory post-synaptic potentials (fEPSP) were compared. fEPSP and PS latencies were found to be longer in the hypothyroid group than in the control group. The PS amplitude and fEPSP slope potentiations in the hypothyroid rats were not statistically different from those in the control rats, except for the field EPSP slope measured in the post-tetanic and maintenance phases. The hypothyroid rats also showed lower thyroxine levels and poor performance in the spatial memory task. The present study provides in vivo evidence for the action of propylthiouracil leading to impaired synaptic plasticity, which might explain deficit in spatial memory tasks in adult hypothyroid rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.