The paper is a complete study of paracontact metric manifolds for which the Reeb vector field of the underlying contact structure satisfies a nullity condition (the condition (1.2), for some real numbers and k and μ. This class of pseudo-Riemannian manifolds, which includes para-Sasakian manifolds, was recently defined in Cappelletti Montano (2010) [13]. In this paper we show in fact that there is a kind of duality between those manifolds and contact metric (k,μ)-spaces. In particular, we prove that, under some natural assumption, any such paracontact metric manifold admits a compatible contact metric (k,μ)-structure (eventually Sasakian). Moreover, we prove that the nullity condition is invariant under D-homothetic deformations and determines the whole curvature tensor field completely. Finally non-trivial examples in any dimension are presented and the many differences with the contact metric case, due to the non-positive definiteness of the metric, are discussed
We give necessary and sufficient conditions for warped product manifolds (M, g) , of dimension ⩾ 4 , with 1 -dimensional base, and in particular, for generalized Robertson-Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R•C −C •R , formed from the curvature tensor R and the Weyl conformal curvature tensor C , is expressed by the Tachibana tensor Q(S, R) formed from the Ricci tensor S and R . We also construct suitable examples of such manifolds. They are quasi-Einstein, i.e. at every point of M rank (S − α g) ⩽ 1 , for some α ∈ R , or non-quasi-Einstein.
Abstract. Tensor product immersions of a given Riemannian manifold was initiated by B.-Y. Chen. In the present article we study the tensor product surfaces of two Euclidean plane curves. We show that a tensor product surface M of a plane circle c 1 centered at origin with an Euclidean planar curve c 2 has harmonic Gauss map if and only if M is a part of a plane. Further, we give necessary and sufficient conditions for a tensor product surface M of a plane circle c 1 centered at origin with an Euclidean planar curve c 2 to have pointwise 1-type Gauss map.
Abstract. In this study we consider φ−conformally flat, φ−conharmonically flat, φ−projectively flat and φ−concircularly flat Lorentzian α−Sasakian manifolds. In all cases, we get the manifold will be an η−Einstein manifold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.