This paper reports the experimental analysis of commercially available variable-capacitance MEMS accelerometers, characterized under standardized tests. Capacitive MEMS sensors of the same low-level input acceleration range with various mechanical sensing element designs, materials, fabrication technologies and price ranges were selected for evaluation. The selected sensors were characterized using ANSI and NIST certified testing equipment and under the same testing conditions; and their sensitivity, resolution, linearity, frequency response, transverse sensitivity, temperature response, noise level and long-term stability were tested and compared. The experimental results are then interpreted to provide an insight to advantages and disadvantages for using a particular mechanical design, fabrication technology, sensor material and the techniques for electronics integration and packaging of each specific sensor design.
Automotive applications are known to impose quite harsh environmental conditions such as vibration, shock, temperature, and thermal cycling on inertial sensors. Micromachined gyroscopes are known to be especially challenging to develop and commercialize due to high sensitivity of their dynamic response to fabrication and environmental variations. Meeting performance specifications in the demanding automotive environment with low-cost and high-yield devices requires a very robust microelectromechanical systems (MEMS) sensing element. This paper reviews the design trend in structural implementations that provides inherent robustness against structural and environmental parameter variations at the sensing element level. The fundamental approach is based on obtaining a gain and phase stable region in the frequency response of the sense-mode dynamical system in order to achieve overall system robustness. Operating in the stable sense frequency region provides improved bias stability, temperature stability, and immunity to environmental and fabrication variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.