In our study, Allium nigrum L. and Allium subhirsutum L. were investigated in terms of phenolic profile, acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and tyrosinase inhibitory potentials. The colorimetric analysis revealed that the highest levels of total phenol (45.6, 15.8 mg GAE/g extract, respectively) and total flavonoid contents (8.2, 5.7 mg QE/g extract, respectively) were found in the bulbs of both plants. About 30 compounds were determined by LC‐ESI‐MS/MS with validated method and 3‐hydroxybenzoic acid (2,188.4 μg/g extract) and p‐coumaric acid (1,700.8 μg/g extract) were major phenolic acids. (−)‐Epigallocatechin gallate (998.3 µg/g extract) and genistein (159.3 μg/g extract) which are neuroprotective compounds were the predominant flavonoids for A. nigrum and A. subhirsutum, respectively. Enzyme inhibitory activities of samples were performed by spectrophotometrically with 96‐well microplate reader. All samples showed anti‐AChE, anti‐BuChE, and anti‐tyrosinase activities and the aerial part of A. nigrum was the most potent (IC50 6.1, 3.27, 22.31 µg/ml, respectively).
Practical applications
Many Allium species, especially those cultivated, are consumed in different countries as food in different ways. In the literature, studies on these species have generally focused on organosulfur compounds of the species. In our present study, phenolic compounds having a wide range of biological activities were determined in different parts of the two Allium species consumed as food. We also investigated in vitro cholinesterases and tyrosinase inhibition activities of these species. A correlation was observed between phenolic compounds and enzyme inhibition activities. These results were further explored and confirmed by principal component analysis (PCA). PCA revealed that samples were discriminated from each other according to phenolic compounds and enzyme inhibitory potencies. Conclusively, this study determines that the chemical profiles and biological activities of A. nigrum and A. subhirsutum.
Many species of the Allium genus, principally the cultivated forms, are widely used as vegetables, spices and natural therapeutics due to their beneficial health properties. This study aimed to identify the phenolic composition and biological activities of the bulb, stem and flower parts of Allium pallens L., collected from two different localities. A total of 28 phenolic compounds were investigated by LC-ESI-MS/MS, and gallic acid, 4-hydroxybenzoic acid, and benzoic acid were found to be the major phenolic compounds in the plants from both locations. Total phenolic-and flavonoid-content analyses of samples were carried out using spectrophotometry, and the stem extracts were found to be rich in phenolics. DPPH, ABTS, FRAP and CUPRAC assays were used to determine the antioxidant capacities of the extracts. A linear relation was observed between the phenolic contents of the extracts and their antioxidant activities, and the stem extracts of plants from both locations were found to have potent antioxidant capacity. The inhibitory activities of the extracts against acetylcholinesterase, butyrylcholinesterase and tyrosinase were determined using a 96-well microplate reader. The antibutyrylcholinesterase activity of the extracts was found to be the highest. The outcomes of these investigations were further explored, and the underlying structure of multivariate data was revealed using principal component analysis. This study presents the distribution of chemical constituents and biological activities of the different parts of A. pallens, and also contributes to further investigations of Allium species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.