Providing an external mechanical stress to cancer cells seems to be an effective approach to treat cancer locally. Numbers of reports on cancer cell death subjected to mechanical stress loading are increasing, but they are more focused on apoptosis. Inducing necrosis is also important in attracting more immune cells to the cancer site via the release of danger-associated molecular patterns from cancer cells. Here we applied dynamic compression to breast cancer cells with a low frequency (0.1–30 Hz) and for a short duration (30–300 s) and they resulted in a mixed mode of apoptosis and necrosis dominant with necrotic cell death, which we call mechanical stress-induced cell death (MSICD). The necrotic cell damage of mechanically treated breast cancer cells increased in a force-dependent and time-dependent manner while a trend of frequency-independent MSICD was observed.
Room temperature liquid metals are an emerging class of functional materials with applications in a variety of soft intelligent systems. In recent years, efforts have been made to integrate liquid...
Future advanced wearable energy harvesters need to have high power densities, functionality under large deformations, scalability, and robust resistance against mechanical damages (i.e. fatigue, delamination, and fracture). To achieve this, ultra-flexible, high dielectric, and thermally conductive materials along with deformable and robust electrodes are needed. Here, we review recent progress in synthesis and integration of liquid metal (LM) material architectures as the building blocks of emerging wearable energy harvesting devices. After a brief introduction to room temperature LM alloys, LM’s various applications in a variety of soft and stretchable power harvesting devices including thermoelectric, triboelectric, dielectric elastomer, and piezoelectric generators are summarized. The unique opportunities and challenges introduced by LM material architectures in this field are also discussed.
Single-walled carbon nanotubes (SWCNTs) are used as a key component for chemical sensors. For miniature scale design, a continuous printing method is preferred for electrical conductance without damaging the substrate. In this paper, a non-contact capillary pen printing method is presented by the formation of a nanoink bridge between the nib of a capillary pen and a polyethylene terephthalate film. A critical parameter for stable printing is the advancing contact angle at the bridge meniscus, which is a function of substrate temperature and printing speed. The printed pattern including dots, lines, and films of SWCNTs are characterized by morphology, optical transparency, and electrical properties. Gas and pH sensors fabricated using the non-contact printing method are demonstrated as applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.