In this research removal of NH-N, NO-N and PO-P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO-N, 80.62% of NH-N and 4.30% of PO-P. With Bacillus cereus the results were 8.40% of NO-N, 28.80% of NH-N and 3.80% of PO-P. The removals with Pseudomonas putida were 2.50% of NO-N, 41.80 of NH-N and 4.30% of PO-P. The consortium of Chlorella vulgaris-Bacillus cereus-Pseudomonas putida removed 29.40% of NO-N, 4.2% of NH-N and 8.4% of PO-P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.
Anthropogenic activities have increased the amount of urban wastewater discharged into natural aquatic reservoirs containing a high amount of nutrients such as phosphorus (Pi and PO 4 − 3 ), nitrogen (NH 3 and NO 3 − ) and organic contaminants. Most of the urban wastewater in Mexico do not receive any treatment to remove nutrients. Several studies have reported that an alternative to reduce those contaminants is using consortiums of microalgae and endogenous bacteria. In this research, a genome-scale biochemical reaction network is reconstructed for the co-culture between the microalga Chlorella vulgaris and the bacterium Pseudomonas aeruginosa. Metabolic Pathway Analysis (MPA), is applied to understand the metabolic capabilities of the co-culture and to elucidate the best conditions in removing nutrients. Theoretical yields for phosphorus removal under photoheterotrophic conditions are calculated, determining their values as 0.042 mmol of PO 4 − 3 per g DW of C. vulgaris, 19.43 mmol of phosphorus (Pi) per g DW of C. vulgaris and 4.90 mmol of phosphorus (Pi) per g DW of P. aeruginosa. Similarly, according to the genome-scale biochemical reaction network the theoretical yields for nitrogen removal are 10.3 mmol of NH 3 per g DW of P. aeruginosa and 7.19 mmol of NO 3 − per g DW of C. vulgaris. Thus, this research proves the metabolic capacity of these microorganisms in removing nutrients and their theoretical yields are calculated.
Anthropogenic activities have increased the amount of urban wastewater discharged into natural aquatic reservoirs confining in them a high amount of nutrients and organics contaminants. Several studies have reported that an alternative to reduce those contaminants is using consortiums of microalgae and endogenous bacteria. In this research, a genome-scale biochemical reaction network is reconstructed for the co-culture between the microalga Chlorella vulgaris and the bacterium Pesudomonas aeruginosa. Metabolic Pathway Analysis (MPA), is applied to understand the metabolic capabilities of the co-culture and to elucidate the best conditions in removing nutrients such as Phosphorus (inorganic phosphorous and phosphate) and Nitrogen (nitrates and ammonia). Theoretical yields for Phosphorus removal under photoheterotrophic conditions are calculated, determining their values as 0.042 mmol of PO4/ g DW of C. vulgaris, 19.53 mmol of inorganic Phosphorus /g DW of C. vulgaris and 4.90 mmol of inorganic Phosphorus/ g DW of P. aeruginosa. Similarly, according to the genome-scale biochemical reaction network the theoretical yields for Nitrogen removal are 10.3 mmol of NH3/g DW of P. aeruginosa and 7.19 mmol of NO3 /g DW of C. vulgaris. Thus, this research proves the metabolic capacity of these microorganisms in removing nutrients and their theoretical yields are calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.