Bis(isopropoxo) Ti(IV) complexes of diamino bis(phenolato) "salan" ligands were prepared, their hydrolysis in 1:9 water/THF solutions was investigated, and their cytotoxicity toward colon HT-29 and ovarian OVCAR-1 cells was measured. In particular, electronic effects at positions ortho and para to the binding phenolato unit were analyzed. We found that para substituents of different electronic features, including Me, Cl, OMe, and NO(2), have very little influence on hydrolysis rate, and all para-substituted ortho-H complexes hydrolyze slowly to give O-bridged clusters with a t(1/2) of 1-2 h for isopropoxo release. Consequently, no clear cytotoxicity pattern is observed as well, where the largest influence of para substituents appears to be of a steric nature. These complexes exhibit IC(50) values of 2-18 μM toward the cells analyzed, with activity which is mostly higher than those of Cp(2)TiCl(2), (bzac)(2)Ti(OiPr)(2) and cisplatin. On the contrary, major electronic effects are observed for substituents at the ortho position, with an influence that exceeds even that of steric hindrance. Ortho-chloro or -bromo substituted compounds possess extremely high hydrolytic stability where no major isopropoxo release as isopropanol occurs for days. In accordance, very high cytotoxicity toward colon and ovarian cells is observed for ortho-Cl and -Br complexes, with IC(50) values of 1-8 μM, where the most cytotoxic complexes are the ortho-Cl-para-Me and ortho-Br-para-Me derivatives. In this series of ortho-substituted complexes, the halogen radius is of lesser influence both on hydrolysis and on cytotoxicity, while OMe substituents do not impose similar effect of hydrolytic stability and cytotoxicity enhancement. Therefore, hydrolytic stability and cytotoxic activity are clearly intertwined, and thus this family of readily available Ti(IV) salan complexes exhibiting both features in an enhanced manner is highly attractive for further exploration.
Under linker exchange conditions, large guests with molecular diameters 3-4 times the framework aperture size have been encapsulated into preformed nanocrystals of the metal-organic framework ZIF-8. Guest encapsulation is facilitated by the formation of short-lived "open" states of the pores upon linker dissociation. Kinetic studies suggested that linker exchange reactions in ZIF-8 proceed via a competition between dissociative and associative exchange mechanisms, and guest encapsulation was enhanced under conditions where the dissociative pathway predominates.
A new family of non-Cp-based non-diketonato-based C 2-symmetrical octahedral Ti(IV) complexes of dianionic diamine bis(phenolato) ligands, which are conveniently obtained as single isomers in quantitative yields, leads to appreciable cytotoxicity against colon and ovarian cells with a non-transferrin-dependent cell penetration mechanism. The ligand structural features including steric demands, symmetry, and aromaticity strongly influence activity, supporting its role in the biological mechanism of action.
A series of Ti(IV) complexes containing diamino bis(phenolato) "salan" type ligands with NH coordination were prepared, and their hydrolysis and cytotoxicity were analyzed and compared to the N-methylated analogues. Substituting methyl groups on the coordinative nitrogen donor of highly active and stable Ti(IV) salan complexes with H atoms has two main consequences: the hydrolysis rate increases and the cytotoxic activity diminishes. In addition, the small modification of a single replacement of Me with H leads to a different major hydrolysis product, where a dinuclear Ti(IV) complex with two bridging oxo ligands is obtained, as characterized by X-ray crystallography, rather than a trinuclear cluster. A partial hydrolysis product containing a single oxo bridge was also crystallographically analyzed. Investigation of a series of complexes with NH donors of different steric and electronic effects revealed that cytotoxicity may be restored by fine tuning these parameters even for complexes of low stability.
Following the discovery of cisplatin, much effort has been devoted to the exploration of transition metal complexes as cytotoxic agents. We have recently introduced the highly efficient C(2)-symmetrical salan-Ti(IV) family of complexes, demonstrating high cytotoxicity toward colon and ovarian cells and enhanced hydrolytic stability in mixed organic/water solutions. The effect of stereochemistry is hereby reported, by comparing the cytotoxic activity and hydrolysis of pure enantiomers and their racemic mixture for four complexes of this family with different aromatic substitutions: para-Me, para-Cl, ortho-Cl, and ortho-OMe. These complexes include the trans-diaminocyclohexyl bridge, which enables ligand-to-metal chiral induction to give solely the Δ isomer when starting from the R,R ligand and vice versa. Different activity is obtained for the different stereochemical forms (Δ, Λ, and rac) in two of the four complexes, where for the other two either all forms are inactive or all are highly active. Additionally, where not all are of similar activity, the racemic mixture is the least active of the three. We therefore conclude that the salan ligand is essential for the fruitful biological interaction, which probably involves a chiral cellular target. The activity of the racemate differing from that expected from a simple mixture of enantiomers operating separately may be explained by the involvement of a polynuclear active species, where different metal centers might be of different configurations. This is particularly supported by the different polynuclear products of hydrolysis obtained from an optically pure complex and from the racemic one, as analyzed crystallographically. The former is an all-R,R chiral C(1)-symmetrical homodimer, while the latter is an achiral R,R-S,SC(i)-symmetrical heterodimer obtained through chiral recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.