In this paper we present a new categorical approach which attempts to provide an original understanding of QM. Our logos categorical approach attempts to consider the main features of the quantum formalism as the standpoint to develop a conceptual representation that explains what the theory is really talking about -rather than as problems that need to be bypassed in order to allow a restoration of a classical "common sense" understanding of what there is. In particular, we discuss a solution to Kochen-Specker contextuality through the generalization of the meaning of global valuation. This idea has been already addressed by the so called topos approach to QM -originally proposed by Isham, Butterfiled and Döring-in terms of sievevalued valuations. The logos approach to QM presents a different solution in terms of the notion of intensive valuation. This new solution stresses an ontological (rather than epistemic) reading of the quantum formalism and the need to restore an objective (rather than classical) conceptual representation and understanding of quantum physical reality.
We study improper mixtures from a quantum logical and geometrical point of view. Taking into account the fact that improper mixtures do not admit an ignorance interpretation and must be considered as states in their own right, we do not follow the standard approach which considers improper mixtures as measures over the algebra of projections. Instead of it, we use the convex set of states in order to construct a new lattice whose atoms are all physical states: pure states and improper mixtures. This is done in order to overcome one of the problems which appear in the standard quantum logical formalism, namely, that for a subsystem of a larger system in an entangled state, the conjunction of all actual properties of the subsystem does not yield its actual state. In fact, its state is an improper mixture and cannot be represented in the von Neumann lattice as a minimal property which determines all other properties as is the case for pure states or classical systems. The new lattice also contains all propositions of the von Neumann lattice. We argue that this extension expresses in an algebraic form the fact that-alike the classical case-quantum interactions produce nontrivial correlations between the systems. Finally, we study the maps which can be defined between the extended lattice of a compound system and the lattices of its subsystems.
In this paper we attempt to consider quantum superpositions from the perspective of the logos categorical approach presented in [26]. We will argue that our approach allows us not only to better visualize the structural features of quantum superpositions providing an anschaulich content to all terms, but also to restore -through the intensive valuation of graphs and the notion of immanent power-an objective representation of what QM is really talking about. In particular, we will discuss how superpositions relate to some of the main features of the theory of quanta, namely, contextuality, paraconsistency, probability and measurement.
Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.