In this study, we introduce a cooperative parallel tabu search algorithm (CPTS) for the quadratic assignment problem (QAP). The QAP is an NP-hard combinatorial optimization problem that is widely acknowledged to be computationally demanding. These characteristics make the QAP an ideal candidate for parallel solution techniques. CPTS is a cooperative parallel algorithm in which the processors exchange information throughout the run of the algorithm as opposed to independent concurrent search strategies that aggregate data only at the end of execution. CPTS accomplishes this cooperation by maintaining a global reference set which uses the information exchange to promote both intensification and strategic diversification in a parallel environment. This study demonstrates the benefits that may be obtained from parallel computing in terms of solution quality, computational time and algorithmic flexibility. A set of 41 test problems obtained from QAPLIB were used to analyze the quality of the CPTS algorithm. Additionally, we report results for 60 difficult new test instances. The CPTS algorithm is shown to provide good solution quality for all problems in acceptable computational times. Out of the 41 test instances obtained from QAPLIB, CPTS is shown to meet or exceed the average solution quality of many of the best sequential and parallel approaches from the literature on all but six problems, whereas no other leading method exhibits a performance that is superior to this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.