Previous studies have established that the major pathway for the first singlet excited state of 1-nitronaphthalene is intersystem crossing to the triplet manifold. In this contribution we present determinations of the decay of the S1 state of this compound in several solvents to establish the time scale of the multiplicity change as a function of the polarity and hydrogen-bonding ability of the solvent environment. The measurements were made with the femtosecond frequency up-conversion technique to follow the weak spontaneous molecular emission which precedes triplet formation. Our results show that in all environments the S1 lifetime is 100 fs or less, making 1-nitronaphthalene the organic compound with the fastest multiplicity change ever measured. We also show that the bathochromic shifts observed for the first absorption band imply changes in the relative energies of the singlet and triplet manifolds, which in turn manifest in a 2-fold increase of the fluorescence lifetime in cyclohexane compared with the polar solvents. Additionally, we performed excited-state calculations at the TD-DFT/ PBE0/6-311++G(d,p) level of theory with the PCM model for solvation. The TD-DFT theory identifies the presence of upper triplet states which can act as receiver states in this highly efficient photophysical pathway. Together, the experimental and theoretical results show that the dynamics of the S1 state in 1-nitronaphthalene represent an extreme manifestation of El-Sayed's rules due to a partial (n-pi*) character in the receiver triplets which are nearly isoenergetic with S1, determining a change in the molecular spin state within 100 fs.
ABSTRACT:State of the art configuration interaction (CI) techniques are used to obtain the best possible nonrelativistic CI results for B + , B, and B − ground states using energy-optimized basis sets of 252, 294, and 294 radial Slater-type functions, respectively.
A priori selected configuration interaction (SCI) with truncation energy error [C. F. Bunge, J. Chem. Phys. 125, 014107 (2006)] and CI by parts [C. F. Bunge and R. Carbó-Dorca, J. Chem. Phys. 125, 014108 (2006)] are used to approximate the total nonrelativistic electronic ground state energy of water at fixed experimental geometry with CI up to sextuple excitations. Correlation-consistent polarized core-valence basis sets (cc-pCVnZ) up to sextuple zeta and augmented correlation-consistent polarized core-valence basis sets (aug-cc-pCVnZ) up to quintuple zeta quality are employed. Truncation energy errors range between less than 1 μhartree, and 100 μhartree for the largest orbital set. Coupled cluster CCSD and CCSD(T) calculations are also obtained for comparison. Our best upper bound, -76.4343 hartree, obtained by SCI with up to sextuple excitations with a cc-pCV6Z basis recovers more than 98.8% of the correlation energy of the system, and it is only about 3 kcal/mol above the "experimental" value. Despite that the present energy upper bounds are far below all previous ones, comparatively large dispersion errors in the determination of the extrapolated energies to the complete basis set do not allow to determine a reliable estimation of the full CI energy with an accuracy better than 0.6 mhartree (0.4 kcal/mol).
We use selected CI with truncation energy error to study the symmetric dissociation of H2O with two triple zeta quality bases. In both cases, the difference between CBS energy errors at the equilibrium geometry and dissociation is larger than 10 mH thus chemically accurate NPE values do not guarantee a chemically accurate PES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.