The combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing effect. The combination therapies significantly accelerated diabetic wound healing in type-1 diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory cell infiltration and edema. The formation of the hair follicles started in 14 days only in the combination therapy and lower proinflammatory cytokine levels were observed compared to single drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability, fewer systemic side effects, and reduced frequency of dosage and amount of drug.
Wound dressings made from natural polymers are an important aspect of biomaterials. Proteinbased materials are less likely to instigate an immunogenic response and have the capacity to degrade in vivo, also without triggering an inflammatory response. Therefore, gelatin (GEL) was chosen and combined with bacterial cellulose (BC) to produce nanofibres and the potential of an all-natural polymer construct was determined. GEL and BC were successfully electrospun with metformin (Met) and glybenclamide (Gb) using a portable, point of need electrospinning set up. The virgin fibre group exhibited a significant effect on the proliferation of L929 (mouse fibroblast) cells but all fibre samples can safely be applied on wound site without risk of cytotoxicity. According to the results obtained by animal tests, the GEL-BC-Gb group showed better recovery than the GEL-BC-Met group. Diabetic wounds treated with GEL-BC-Met were characterized by moderate re-epithelialization and partially organized granulation tissue.Moderate to complete re-epithelialization and well-formed granulation tissue were observed in diabetic wounds treated with GEL-BC-Gb. The histologic scores obtained on day 14 confirmed that the GEL-BC-Gb group played a stronger wound-healing role compared to the GEL-BC-Met group. The highest decrease of TNF-α level was observed in the GEL-BC-Gb group at the end of the experiment but there is no significant difference between drug-loaded fibre groups.Therefore, topical administration of Met and Gb in a sustained release form has a high potential for diabetic wound healing with high bioavailability and fewer systemic side effects but Gb showed better improvement according to the results of the animal tests.
Breast cancer is the most common cancer worldwide in women and it is highly malignant and fatal. PDGF-D plays role in regulation of many cellular processes such as angiogenesis. PDGF-D is overexpressed in many types of cancers and promote tumor growth and metastasis. Silencing of PDGF-D gene by using shRNA with an appropriate carrier system may decrease tumor growth and metastasis. In our study, we prepared chitosan nanoparticles loaded with five different shRNA plasmids targeting different exons of PDGF-D gene. Then, nanoparticles were characterized in vitro and transfection efficiency of these nanoparticles were investigated in breast cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-435). The effects of single and multiple shRNA sequences, molecular weight of chitosan (150 kDa and 400 kDa) and the amount of shRNA (100 and 500 µg) on the characterization and transfection efficiencies of nanoparticles have been studied. Size of nanoparticles changed between 200-400 nm and approximately 95-100% encapsulation efficiency were obtained. Release of shRNA changed with the molecular weight of chitosan. It was obtained that formulation containing shRNA plasmid targeting PDGF-D exon 6 (NP1) has the highest silencing efficiency in MDA-MB-231 cell line. It was also evaluated that chitosan can be a suitable gene delivery system for shRNA targeting PDGF-D.
RNA interference represents a promising therapeutic strategy for the silencing of specific target genes in cancer therapy. Small interfering RNAs and DNA-based vectors encoding short hairpin RNAs provide sequence-specific post-transcriptional gene silencing by binding to its complementary RNA. For the therapeutic use of siRNA in cancer, efficient intracellular delivery is necessary. The efficient cancer therapy with RNAi is not still accomplished because of internalization and intracellular trafficking problems such as low transfection efficiency, enzyme degradation, inappropriate subcellular localization, and endosomal trapping of siRNAs in cells. Cancer is a complex disease including multiple genes and pathways. The most important benefits of siRNA therapy are high target specificity and non-toxicity compared with chemotherapy. The uptake of siRNA by cells without a carrier system is possible, but naked siRNA is mostly degraded with nucleases and activates the immune responses. Development of appropriate delivery systems is an important issue in the use of siRNA-based therapeutics. Non-viral delivery systems have great potential for safe and effective delivery of siRNA therapeutics to tumor cells. Nanocarriers such as nanoplexes, lipoplexes, nanoparticles, and liposomes have been commonly used for siRNA delivery. This chapter highlights the importance of non-viral delivery systems in vitro and in vivo cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.