Interference lithography (IL) is the best suited technology for the origination of large area master structures with high resolution. In prior works, we seamlessly pattern areas of up to 1.2 x 1.2 m2 with periodic features, i.e. a diffraction grating with a period in the micron range. For this process we use an argon ion laser emitting at 363.8 nm. Thus, feasible periods are in the range of 100 μm to 200 nm. Edge-defined techniques or also called (self-aligned) double patterning processes can be used to double the spatial frequency of such structures. This way, we aim to reduce achievable periods further down to 100 nm. In order to replicate master structures, we make use of nanoimprint lithography (NIL) processes. In this work, we present results using IL as mastering and NIL as replication technology in the fields of photovoltaics as well as display and lighting applications. In photovoltaics different concepts like the micron-scale patterning of the front side as well as the realization of rear side diffraction gratings are presented. The benefit for each is shown on final device level. In the context of display and lighting applications, we realized various structures ranging from designed, symmetric or asymmetric, diffusers, antireflective and/or antiglare structures, polarization optical elements (wire grid polarizers), light guidance and light outcoupling structures
We present a process chain to generate periodically arranged metallic nanostructures supporting plasmons for the use in solar cells. As proof-of-concept, platinum and silver nanoparticles with a period of 1 m and a diameter of 600 nm were fabricated. For the platinum particles, an absorption enhancement for light with a wavelength of 3.6 m was observed in silicon. By decreasing structure sizes the active spectral region can be shifted to wavelength relevant for solar cell applications. Therefore, in a second step a silver grating with a smaller period and also smaller diameter of approximately 200 nm was realized
We show that the radiation-hardness of space solar cells can be significantly improved by employing nanophotonic light trapping. Two light-trapping structures are investigated in this work. In the first, an array of Al nanoparticles is embedded within the anti-reflection coating of a GaInP/InGaAs/Ge solar cell. A combined experimental and simulation study shows that this structure is unlikely to lead to an improvement in radiation hardness. In the second, a diffractive structure is positioned between the middle cell and the bottom cell. Computational results, obtained using an experimentally validated electro-optical simulation tool, show that a properly designed light-trapping structure in this position can lead to a relative 10% improvement in the middle-cell photocurrent at end-of-life.
-We show that the radiation-hardness of space solar cells can be significantly improved by employing nanophotonic light trapping. Two light-trapping structures are investigated in this work. In the first, an array of Al nanoparticles is embedded within the anti-reflection coating of a GaInP/InGaAs/Ge solar cell. A combined experimental and simulation study shows that this structure is unlikely to lead to an improvement in radiation hardness. In the second, a diffractive structure is positioned between the middle cell and the bottom cell. Computational results, obtained using an experimentally validated electro-optical simulation tool, show that a properly designed light-trapping structure in this position can lead to a relative 10% improvement in the middle-cell photocurrent at end-of-life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.