A 4-methoxy-substituted triphenylamine containing the aromatic diamine, 4,49-diamino-40-methoxytriphenylamine (2), was synthesized by the caesium fluoride-mediated condensation of p-anisidine with 4-fluoronitrobenzene, followed by palladium-catalyzed hydrazine reduction of the dinitro intermediate. A series of new polyamides with pendent 4-methoxy-substituted triphenylamine (TPA) units having inherent viscosities of 0.27-1.39 dL g 21 were prepared via the direct phosphorylation polycondensation of various dicarboxylic acids and the diamine (2). All the polymers were readily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP) and N,N-dimethylacetamide (DMAc), and could be solution-cast into tough and flexible polymer films. These aromatic polyamides had useful levels of thermal stability associated with their relatively high softening temperature (242-282 uC), 10% weight-loss temperatures in excess of 470 uC, and char yields at 800 uC in nitrogen higher than 60%. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide (ITO)-coated glass substrate exhibited reversible oxidation at 0.73-0.79 V versus Ag/AgCl in acetonitrile solution, and revealed excellent stability of electrochromic characteristics with a color change from colorless to green at applied potentials ranging from 0.00 to 1.05 V. These anodically polymeric electrochromic materials not only showed excellent reversible electrochromic stability with good green coloration efficiency (CE = 374 cm 2 C 21 ) but also exhibited high contrast of optical transmittance change (DT %) up to 85% at 787 nm and 30% at 391 nm. After over 1000 cyclic switches, the polymer films still exhibited excellent stability of electrochromic characteristics.
A new triphenylamine-containing aromatic diamine, N,N-bis(4-aminophenyl)-N′,N′-di(4-methoxylphenyl)-1,4-phenylenediamine (4), was successfully synthesized by the cesium fluoride-mediated condensation of 4-amino-4′,4′′-dimethoxytriphenylamine with 4-fluoronitrobenzene, followed by palladium-catalyzed hydrazine reduction of the dinitro intermediate. A series of novel polyamides with pendent 4,4′-dimethoxy-substituted triphenylamine (TPA) units having inherent viscosities of 0.28-0.80 dL/g were prepared via the direct phosphorylation polycondensation from the diamine (4) and various dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP) and N,Ndimethylacetamide (DMAc), and could be solution-cast into tough and flexible polymer films. These aromatic polyamides had useful levels of thermal stability associated with their relatively high softening temperature (242-282 °C), 10% weight-loss temperatures in excess of 510 °C, and char yields at 800 °C in nitrogen higher than 63%. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide (ITO) coated glass substrate exhibited two reversible oxidation redox couples at 0.47-0.51 and 0.82-0.86 V vs Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent stability of electrochromic characteristics, with a color change from colorless or pale yellowish neutral form to green and blue oxidized form at applied potentials ranging from 0.00 to 0.98 V. These anodically polymeric electrochromic materials not only showed excellent reversible electrochromic stability with good coloration efficiency of green (CE ) 285 cm 2 /C) and blue (CE ) 272 cm 2 /C) but also exhibited high contrast of optical transmittance change (∆T %) up to 60% at 430 nm and 73% at 1035 nm for green, and 86% at 850 nm for blue. After over 1000 cyclic switches, the polymer films still exhibited excellent stability of electrochromic characteristics.
Four series of polyimides I–VI with pendent triphenylamine (TPA) units having inherent viscosities of 0.44–0.88 dL/g were prepared from four diamines with two commercially available tetracarboxylic dianhydrides via a conventional two‐step procedure that included a ring‐opening polyaddition to give polyamic acids, followed by chemical cyclodehydration. These polymers were amorphous and could afford flexible films. All the polyimides had useful levels of thermal stability associated with high softening temperatures (279–300 °C), 10% weight‐loss temperatures in excess of 505 °C, and char yields at 800 °C in nitrogen higher than 58%. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyimide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited a or two reversible oxidation couples at 0.65–0.78 and 1.00–1.08 V versus Ag/AgCl in acetonitrile solution. The polymer films revealed electrochromic characteristics with a color change from neutral pale yellowish to blue doped form at applied potentials ranging from 0.00 to 1.20 V. The CO2 permeability coefficients (P) and permeability selectivity (P/P) for these polyimide membranes were in the range of 4.73–16.82 barrer and 9.49–51.13, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7937–7949, 2008
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.