Animal feed can be contaminated with fomites carrying swine viruses and subsequently be a vehicle for viral transmission. This contamination may not be evenly distributed, and there is no validated sampling method for detection of viruses in animal feed or ingredients. The purpose of this experiment was to evaluate the sensitivity of ingredient sampling methods for detection of porcine epidemic diarrhoea virus (PEDV). No animals were used in this experiment, so approval from an animal ethics committee was not necessary. Thirteen kg soybean meal was used in a 2 × 2 factorial plus a control, with 2 doses of PEDV (Low: 103 TCID50/g versus High: 105 TCID50/g) and two sample types (individual probes versus composite sample). Soybean meal was confirmed PEDV negative, then loaded into individual, 1‐kg polyethylene tote bags with PEDV introduced after loading the first 100 g. There were six replicates per PEDV dose plus a control. Ten individual probes or one composite sample per bag were created and analysed for PEDV via qRT‐PCR. The interaction, dose and sample type were significant for both PEDV presence and quantity. No control samples had detectable PEDV. At the low dose, no PEDV RNA was detected in individual probes or composite samples, but was confirmed in 100% (32.4 Ct) of the inoculant samples. This is likely due to loss of sensitivity during the analysis process, which has been previously reported to cause a loss up to 10 Ct when detecting PEDV in feed or ingredients. At the high dose, only 37% (37.7 Ct) of the probes had detectable PEDV RNA. Composite samples were more sensitive (p < .05), with PEDV RNA detected in 100% of samples (35.7 Ct). In summary, sampling bulk ingredients for PEDV should include compositing at least 10 individual samples. Future research is needed to identify alternative methods that have a similar sensitivity, but require less time and effort to collect such a sample.
ABSTRACT:The objective of the study was to examine the effect of growth-promoting technologies (GP) on Longissimus lumborum steak tenderness, muscle fiber cross-sectional area (CSA), and collagen solubility. Crossbred feedlot heifers (n = 33; initial BW 464 ± 6 kg) were blocked by BW and assigned to 1 of 3 treatments: no GP (CON; n = 11); implant, no zilpaterol hydrochloride (IMP; n = 11); implant and zilpaterol hydrochloride (COMBO; n = 11). Heifers assigned to receive an implant were administered Component TE-200 on d 0 of the study, and the COMBO group received 8.3 mg/ kg DM of zilpaterol hydrochloride for the final 21 d of feeding with a 3 d withdrawal period. Following harvest, strip loins were collected and fabricated into 4 roasts and aged for 3, 14, 21, or 35 d postmortem. Fiber type was determined by immunohistochemistry. After aging, objective tenderness and collagen solubility were measured. There was a treatment × day of aging (DOA) interaction for Warner-Bratzler shear force (WBSF; P < 0.01). At d 3 of aging, IMP and COMBO steaks had greater WBSF than CON steaks (P < 0.01). By d 14 of aging, the WBSF of IMP steaks was not different (P = 0.21) than CON steaks, but COMBO steaks had greater shear values than steaks of other treatments (P < 0.02). The COMBO steaks only remained tougher (P = 0.04) than the CON steaks following 35 DOA. Compared to CON muscles, IMP and COMBO type I and IIX muscle fibers were larger (P < 0.03). Treatment, DOA, or the two-way interactions did not impact measures of total and insoluble collagen (P > 0.31). Soluble collagen amount tended to be affected (P = 0.06) by a treatment × DOA interaction which was due to COMBO muscle having more soluble collagen than the other 2 treatments on d 21 of aging (P < 0.02). Correlation analysis indicated that type I, IIA, and IIX fiber CSA are positively correlated with WBSF at d 3 and 14 of aging (P < 0.01), but only type IIX fibers are correlated at d 21 and 35 of aging (P < 0.03). At these time periods, total and insoluble collagen became positively correlated with WBSF (P < 0.01). This would indicate that relationship between muscle fiber CSA and WBSF decreases during postmortem aging, while the association between WBSF and collagen characteristics strengthens. The use of GP negatively impacted meat tenderness primarily through increased muscle fiber CSA and not through altering collagen solubility.
A total of 160 finishing pigs (PIC 327 × 1050; initially 45.6 kg) were used in an 84d experi ment to evaluate the effects of dietary fat source and feeding duration on growth performance, carcass char acteristics, and carcass fat quality. There were 2 pigs per pen with 8 pens per treatment. The 10 dietary treat ments were a corn-soybean meal control diet with no added fat and a 3 × 3 factorial with main effects of fat source (4% tallow, 4% soybean oil, or a blend of 2% tallow and 2% soybean oil) and feeding duration (d 0 to 42, 42 to 84, or 0 to 84). The control cornsoybean meal diet was fed in place of added fat diets when needed for duration treatment purposes. On d 0, 1 pig was identified in each pen and fat biopsy samples of the back, belly, and jowl were collected on d 0, 41, and 81 for fatty acid analysis. At the conclusion of the study, all pigs were harvested, carcass characteristics were determined, and back, belly, and jowl fat samples were collected for analysis. Overall (d 0 to 84), there were no differences among pigs fed the different fat sources for growth and carcass characteristics; howev er, pigs fed diets with added fat for the entire study had improved (P = 0.036) G:F compared with pigs fed the
Background: While porcine biological hazards have had the potential to be transmitted through feed and feed mills for decades, the emerging threat of foreign animal disease has elevated the concern that these may enter or be transmitted throughout the domestic swine herd via a feed vehicle.Objective: The goal of this review was to describe the current classification for emerging porcine biological pathogen transmission through the feed supply chain so resources can be best directed towards those of highest risk.Methods: By assessing the pathogen severity to pigs and the probability of pathogen transmission through feed, an overall risk can be established using a hazard analysis matrix. Results: There is negligible risk for feed-based transmission of a transmissible spongiform encephalopathy, Trichinella spiralis, Toxoplasma gondii, Salmonella Choleraesuis, Salmonella spp. except Choleraesuis and I 4,[5],12:i:-, porcine deltacoronavirus, Senecavirus A, mammalian orthoreovirus 3, foot and mouth disease virus, classical swine fever virus or Chinese pseudorabies virus. However, the combined severity and probability of Salmonella enterica serotype I 4,[5],12:i:-, porcine epidemic diarrhoea virus and African swine fever virus warrant a moderate risk characterization for transmission through the US feed supply chain.Conclusions: This risk can be maintained below critical status by minimizing the likelihood that a pathogen can enter the feed supply chain, such as by excluding high-risk ingredients from facilities, extending biosecurity to mills, and considering proactive mitigation strategies. In reality, all these actions may be necessary to prevent the detrimental transmission of porcine biological hazards into the US swine herd through the feed supply chain. K E Y W O R D Sanimal food, bacteria, biological, feed, hazard, virus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.