A fundamental problem of finding applications that are highly relevant to development tasks is the mismatch between the high-level intent reflected in the descriptions of these tasks and low-level implementation details of applications. To reduce this mismatch we created an approach called Exemplar (EXEcutable exaMPLes ARchive) for finding highly relevant software projects from large archives of applications. After a programmer enters a naturallanguage query that contains high-level concepts (e.g., MIME, data sets), Exemplar uses information retrieval and program analysis techniques to retrieve applications that implement these concepts. Our case study with 39 professional Java programmers shows that Exemplar is more effective than Sourceforge in helping programmers to quickly find highly relevant applications.
This paper describes a prototype that predicts the shopping lists for customers in a retail store. The shopping list prediction is one aspect of a larger system we have developed for retailers to provide individual and personalized interactions with customers as they navigate through the retail store. Instead of using traditional personalization approaches, such as clustering or segmentation, we learn separate classifiers for each customer from historical transactional data. This allows us to make very fine-grained and accurate predictions about what items a particular individual customer will buy on a given shopping trip.We formally frame the shopping list prediction as a classification problem, describe the algorithms and methodology behind our system, its impact on the business case in which we frame it, and explore some of the properties of the data source that make it an interesting testbed for KDD algorithms. Our results show that we can predict a shopper's shopping list with high levels of accuracy, precision, and recall. We believe that this work impacts both the data mining and the retail business community. The formulation of shopping list prediction as a machine learning problem results in algorithms that should be useful beyond retail shopping list prediction. For retailers, the result is not only a practical system that increases revenues by up to 11%, but also enhances customer experience and loyalty by giving them the tools to individually interact with customers and anticipate their needs.
ThispaperdescribesanIntelligentShoppingAssistantdesigned for a shopping cart mounted tablet PC that enables individual interactions with customers. We use machine learning algorithms to predict a shopping list for the customer's current trip and present this list on the device. As they navigate through the store, personalized promotions are presented using consumer models derived from loyalty card data for each inidvidual. In order for shopping assistant devices to be effective, we believe that they have to be powered by algorithms that are tuned for individual customers and can make accurate predictions about an individual's actions. We formally frame the shopping list prediction as a classification problem, describe the algorithms and methodology behind our system, and show that shopping list prediction can be done with high levels of accuracy, precision, and recall. Beyond the prediction of shopping lists we briefly introduce other aspects of the shopping assistant project, such as the use of consumer models to select appropriate promotional tactics, and the development of promotion planning simulation tools to enable retailers to plan personalized promotions delivered through such a shopping assistant.
No abstract
Redacting text documents has traditionally been a mostly manual activity, making it expensive and prone to disclosure risks. This paper describes a semi-automated system to en- sure a specified level of privacy in text data sets. Recent work has attempted to quantify the likelihood of privacy breaches for text data. We build on these notions to provide a means of obstructing such breaches by framing it as a multi-class classification problem. Our system gives users fine-grained control over the level of privacy needed to obstruct sensi- tive concepts present in that data. Additionally, our system is designed to respect a user-defined utility metric on the data (such as disclosure of a particular concept), which our methods try to maximize while anonymizing. We describe our redaction framework, algorithms, as well as a prototype tool built in to Microsoft Word that allows enterprise users to redact documents before sharing them internally and obscure client specific information. In addition we show experimen- tal evaluation using publicly available data sets that show the effectiveness of our approach against both automated attack- ers and human subjects.The results show that we are able to preserve the utility of a text corpus while reducing disclosure risk of the sensitive concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.