The electrophoretic separation of high-molecular-weight proteins (> 500 kDa) using polyacrylamide is difficult because gels with a large enough pore size for adequate protein mobility are mechanically unstable. A 1% vertical sodium dodecyl sulfate (SDS)-agarose gel electrophoresis (VAGE) system has been developed that allows titin (a protein with the largest known SDS subunit size of 3000-4000 kDa) to migrate over 10 cm in a approximately 13 cm resolving gel. Such migration gives clear and reproducible separation of titin isoforms. Proteins ranging in size from myosin heavy chain ( approximately 220 kDa) up to titin can be resolved on this gel system. Electroblotting of these very large proteins was nearly 100% efficient. This VAGE system has revealed two titin size variants in rabbit psoas muscle, two N2BA bands in rabbit cardiac muscle, and species differences between titins from rat and rabbit muscle. Agarose electrophoresis should be the method of choice for separation and blotting of proteins with very large subunit sizes.
The giant elastic protein titin is a determinant factor in how much blood fills the left ventricle during diastole, and thus in the etiology of heart disease. Titin has been identified as a target of S-glutathionylation, an end product of the nitric oxide signaling cascade that increases cardiac muscle elasticity. However, it is unknown how S-glutathionylation may regulate the elasticity of titin and cardiac tissue. Here we show that mechanical unfolding of titin immunoglobulin (Ig) domains exposes buried cysteine residues, which then can be S-glutathionylated. S-glutathionylation of cryptic cysteines greatly decreases the mechanical stability of the parent Ig domain as well as its ability to fold. Both effects favor a more extensible state of titin. Furthermore we demonstrate that S-glutathionylation of cryptic cysteines in titin mediates mechano-chemical modulation of the elasticity of human cardiomyocytes. We propose that posttranslational modification of cryptic residues is a general mechanism to regulate tissue elasticity.
Titin is a very large alternatively spliced protein that performs multiple functions in heart and skeletal muscle. A rat strain is described with an autosomal dominant mutation that alters the isoform expression of titin. While wild type animals go through a developmental program where the 3.0 MDalton N2B becomes the major isoform expressed by two to three weeks after birth (~85%), the appearance of the N2B is markedly delayed in heterozygotes and never reaches more than 50% of the titin in the adult. Homozygote mutants express a giant titin of the N2BA isoform type (3.9 MDalton) that persists as the primary titin species through ages of more than one and half years. The mutation does not affect the isoform switching of troponin T, a protein that also is alternatively spliced with developmental changes. The basis for the apparently greater size of the giant titin in homozygous mutants was not determined, but additional length was not due to inclusion of sequence from larger numbers of PEVK exons or the Novex III exon. Passive tension measurements using isolated cardiomyocytes from homozygous mutants showed that cells could be stretched to sarcomere lengths greater than 4 µm without breakage. This novel rat model should be useful for exploring the potential role of titin in the Frank-Starling relationship and mechano-sensing/signaling mechanisms.
Developmental changes in the alternative splicing patterns of titin were observed in rat cardiac muscle. Titin from 16-day fetal hearts consisted of a single 3710 kDa band on SDS agarose gels, and it disappeared by 10 days after birth. The major adult N2B isoform (2990 kDa) first appeared in 18-day fetal hearts and its proportion in the ventricle increased to approximately 85% from 20 days of age and older. Changes in three other intermediate-sized N2BA isoform bands also occurred during this same time period. The cDNA sequences of fetal cardiac, adult ventricle, and adult soleus were different in the PEVK and alternatively spliced middle Ig domain. Extensive heterogeneity in splice patterns was found in the N2BA PEVK region. The extra length of the fetal titin isoforms appeared to be due to both a greater number of middle Ig domains expressed plus the inclusion of more PEVK exons. Passive tension measurements on myocyte-sized fragments indicated a significantly lower tension in neonate versus adult ventricles at sarcomere lengths greater than 2.1 microm, consistent with the protein and cDNA sequence results. The time course of the titin isoform switching was similar to that occurring with myosin and troponin I during development.
Background Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of all cases of heart failure and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function. Methods and Results We compared mouse models expressing phosphorylation deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and WT-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide (BNP) levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of heart failure. Echocardiography (ejection fraction, myocardial relaxation velocity) and pressure/volume measurements (−dP/dtmin, pressure decay time constant Tau-Glantz, passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice while deficient cMyBP-C phosphorylation causes diastolic dysfunction with preserved ejection fraction in cMyBP-C(t3SA) mice. Simultaneous force and [Ca2+]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not due to altered [Ca2+]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates. Conclusions cMyBP-C phosphorylation enhances relaxation while deficient phosphorylation causes diastolic dysfunction and phenotypes resembling HFpEF. Thus, cMyBP-C is a potential target for treatment of HFpEF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.