Glioblastoma Multiforme (GBM) is the most malignant brain tumor and highly resistant to intensive combination therapies. GBM is one of the most vascularized tumors and vascular endothelial growth factor (VEGF) produced by tumor cells is a major factor regulating angiogenesis. Successful results of preclinical studies of anti-angiogenic therapies using xenograft mouse models of human GBM cell lines encouraged clinical studies of anti-angiogenic drugs such as bevacizumab (Avastin), an anti-VEGF antibody. However, these clinical studies have shown that most patients become resistant to anti-VEGF therapy after an initial response. Recent studies have revealed some resistance mechanisms against anti-VEGF therapies involved in several types of cancer. In this review, we address mechanisms of angiogenesis, including unique features in GBMs, and resistance to anti-VEGF therapies frequently observed in GBM. Enhanced invasiveness is one such resistance mechanism, and recent works report the contribution of activated MET signaling induced by inhibition of VEGF signaling. On the other hand, tumor cell-originated neovascularization including tumor-derived endothelial cell-induced angiogenesis and vasculogenic mimicry has been suggested to be involved in the resistance to anti-VEGF therapy. Therefore, these mechanisms should be targeted in addition to anti-angiogenic therapies to achieve better results for patients with GBM.
The vaccinia virus double-stranded RNA binding protein E3 has been demonstrated to inhibit the expression of cytokines, including beta interferon (IFN-) and tumor necrosis factor alpha (TNF-␣). However, few details regarding the molecular mechanisms of this inhibition have been described. Using real-time PCR arrays, we found that E3 suppressed the induction of a diverse array of cytokines representing members of the IFN, interleukin (IL), TNF, and transforming growth factor cytokine families. We discovered that the factor(s) responsible for the induction of IL-6, TNF-␣, and inhibin beta A (INHBA) was associated with the early and late phases of virus infection. In contrast, the factor(s) which regulates IFN- induction was associated with the late phase of replication. We have found that expression of these cytokines can be induced by transfection of cells with RNA isolated from vaccinia virus-infected cells. Moreover, we provide evidence that E3 antagonizes both PKR-dependent and PKR-independent pathways to regulate cytokine expression. PKR-dependent activation of p38 and NF-B was required for vaccinia virus-induced INHBA expression, whereas induction of TNF-␣ required only PKR-dependent NF-B activation. In contrast, induction of IL-6 and IFN- was largely PKR independent. IL-6 induction is regulated by NF-B, while IFN- induction is mediated by IFN- promoter stimulator 1 and IFN regulatory factor 3/NF-B. Collectively, these results indicate that E3 suppresses distinct but interlinked host signaling pathways to inhibit the expression of a diverse array of cytokines.
Poxviruses are important human and animal pathogens that have evolved elaborate strategies for antagonizing host innate and adaptive immunity. The E3 protein of vaccinia virus, the prototypic member of the orthopoxviruses, functions as an inhibitor of innate immune signaling and is essential for vaccinia virus replication in vivo and in many human cell culture systems. However, the function of orthologues of E3 expressed by poxviruses of other genera with different host specificity remains largely unknown. In the present study, we characterized the E3 orthologues from sheeppox virus, yaba monkey tumor virus, swinepox virus, and myxoma virus for their ability to modulate protein kinase R (PKR) function, cytokine responses and virus pathogenicity. We found that the E3 orthologues of myxoma virus and swinepox virus could suppress PKR activation and interferon (IFN)-induced antiviral activities and restore the host range function of E3 in HeLa cells. In contrast, the E3 orthologues from sheeppox virus and yaba monkey tumor virus were unable to inhibit PKR activation. While the sheeppox orthologue was unable to restore the host range function of E3, the yaba monkey tumor virus orthologue partially restored E3-deficient vaccinia virus replication in HeLa cells, correlated with its ability to suppress IFN-induced antiviral activities. Moreover, poxvirus E3 orthologues show varying ability to inhibit the induction of antiviral and proinflammatory cytokines. Despite these in vitro results, none of the E3 orthologues tested was capable of restoring pathogenicity to E3-deficient vaccinia virus in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.