Occupational exposure to beryllium may cause chronic beryllium disease (CBD), a granulomatous interstitial pneumonitis caused by a cell-mediated immune response with delayed hypersensitivity initiated by an electrostatic interaction with the MHC class II human leukocyte antigen (HLA). Increased research efforts focus on the development of a CBD treatment by chelation therapy. This work presents an in vitro evaluation of the beneficial effects of beryllium chelation with different organic substrates. We have used a standard beryllium lymphocyte proliferation test (BeLPT) adapted for mouse splenocytes. Three complexing agents, 4,5-dihydroxy-1,3-benzenedisulfonic acid (tiron), nitrilotripropionic acid (NTP) and nitrilotriacetic acid (NTA), were tested using different protocols of the splenocyte proliferation test (SPT). We studied their corrective effect (beryllium pre-exposed splenocytes), their protective effect (ligand pre-exposed splenocytes) and their combined effects at fixed Be:L ratio of 1:2, at fixed Be concentration and at fixed L concentration. We also studied the effect of tiron in preventing splenocyte sensitization to beryllium. All three complexing agents showed a corrective effect and proved efficient in the combined effects, except NTA in the fixed Be:L ratio. Only NTP and tiron showed a significant protection at lower beryllium concentrations, while NTA was not significant. Splenocytes pre-exposed to chelated beryllium did not show sensitization while splenocytes pre-exposed to beryllium were sensitized. We observed a strong correlation between the efficiency of the complexing agent and its affinity towards beryllium. Both tiron and NTP showed a similar affinity towards the beryllium ion that is 10(7) higher than that of NTA.
Background: A routine method for the quantification of beryllium in biological fluids is essential for the development of a chelation therapy for Chronic Beryllium Disease (CBD). We describe a procedure for the direct determination of beryllium in undigested micro quantities of human blood and serum using graphite furnace atomic absorption spectrometry. Blood and serum samples are prepared respectively by a simple 8-fold and 5-fold dilution with a Nash Reagent. Three experimental setups are compared: using no modifier, using magnesium nitrate and using palladium/ citric acid as chemical modifiers.
Background: Occupational exposure to beryllium may cause Chronic Beryllium Disease (CBD), a lung disorder initiated by an electrostatic interaction with the MHC class II human leukocyte antigen (HLA). Molecular studies have found a significant correlation between the electrostatic potential at the HLA-DP surface and disease susceptibility. CBD can therefore be treated by chelation therapy. In this work, we studied the effect of two complexing agents, nitrilotriproprionic acid (NTP) and 4,5-dihydroxy-1,3-benzene disulphonate (Tiron), on the fractionation of beryllium in human serum analysed by graphite furnace atomic absorption spectrometry (GFAAS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.