In an integrative genomic analysis, we found higher proportions of early-onset DGCs to contain somatic mutations in CDH1 or TGFBR1 compared with late-onset DGCs. However, a smaller proportion of early-onset DGCs contained somatic mutations in RHOA than late-onset DGCs. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times of patients, which might account for the aggressive clinical course of early-onset gastric cancer. Female predominance in early-onset gastric cancer may be related to relatively high rates of somatic CDH1 and TGFBR1 mutations in this population.
Cisplatin induces apoptosis in a variety of cell types. However, the signaling pathway of cisplatin-induced apoptosis in renal epithelial cells is poorly understood. The present study was undertaken to determine the role of the extracellular signal-regulated kinase (ERK) in cisplatin-induced apoptosis of renal epithelial cells using opossum kidney cells. Cisplatin at 50 microM induced apoptosis in a time-dependent manner. Cisplatin treatment caused sustained activation of ERK1/2, which was prevented by PD98059 and U0126, inhibitors of ERK1/2 upstream kinase MEK1/2. Transient transfection of cells with constitutive active MEK1 increased the cisplatin-induced apoptosis, whereas that with a dominant-negative mutant of MEK1 decreased it. Cisplatin induced an increase in Bax expression, mitochondrial membrane depolarization, mitochondrial cytochrome c release and caspase-3 activation, and these changes were prevented by the MEK inhibitor. These results suggested that (1) the ERK1/2 activation is required for the cisplatin-induced apoptosis of renal epithelial cells; and (2) ERK1/2 mediates the mitochondria-dependent apoptotic signaling by acting upstream of Bax expression.
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/ A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogenactivated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPKdependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer.
BackgroundEpithelial–mesenchymal transition (EMT) plays a significant role in tumor progression and invasion. Snail is a known regulator of EMT in various malignant tumors. This study investigated the role of Snail in gastric cancer.MethodsWe examined the effects of silenced or overexpressed Snail using lenti-viral constructs in gastric cancer cells. Immunohistochemical analysis of tissue microarrays from 314 patients with gastric adenocarcinoma (GC) was used to determine Snail’s clinicopathological and prognostic significance. Differential gene expression in 45 GC specimens with Snail overexpression was investigated using cDNA microarray analysis.ResultsSilencing of Snail by shRNA decreased invasion and migration in GC cell lines. Conversely, Snail overexpression increased invasion and migration of gastric cancer cells, in line with increased VEGF and MMP11. Snail overexpression (≥75% positive nuclear staining) was also significantly associated with tumor progression (P < 0.001), lymph node metastases (P = 0.002), lymphovascular invasion (P = 0.002), and perineural invasion (P = 0.002) in the 314 GC patients, and with shorter survival (P = 0.023). cDNA microarray analysis revealed 213 differentially expressed genes in GC tissues with Snail overexpression, including genes related to metastasis and invasion.ConclusionSnail significantly affects invasiveness/migratory ability of GCs, and may also be used as a predictive biomarker for prognosis or aggressiveness of GCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.