In this brief, a new adaptive neurocontrol algorithm for a single-input-single-output (SISO) strict-feedback nonlinear system is proposed. Most of the previous adaptive neural control algorithms for strict-feedback nonlinear systems were based on the backstepping scheme, which makes the control law and stability analysis very complicated. The main contribution of the proposed method is that it demonstrates that the state-feedback control of the strict-feedback system can be viewed as the output-feedback control problem of the system in the normal form. As a result, the proposed control algorithm is considerably simpler than the previous ones based on backstepping. Depending heavily on the universal approximation property of the neural network (NN), only one NN is employed to approximate the lumped uncertain system nonlinearity. The Lyapunov stability of the NN weights and filtered tracking error is guaranteed in the semiglobal sense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.