Antibodies constitute a critical component of the naturally acquired immunity that develops following frequent exposure to malaria. However, specific antibody titres have been reported to decline rapidly in the absence of reinfection, supporting the widely perceived notion that malaria infections fail to induce durable immunological memory responses. Currently, direct evidence for the presence or absence of immune memory to malaria is limited. In this study, we analysed the longevity of both antibody and B cell memory responses to malaria antigens among individuals who were living in an area of extremely low malaria transmission in northern Thailand, and who were known either to be malaria naïve or to have had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. We found that exposure to malaria results in the generation of relatively avid antigen-specific antibodies and the establishment of populations of antigen-specific memory B cells in a significant proportion of malaria-exposed individuals. Both antibody and memory B cell responses to malaria antigens were stably maintained over time in the absence of reinfection. In a number of cases where antigen-specific antibodies were not detected in plasma, stable frequencies of antigen-specific memory B cells were nonetheless observed, suggesting that circulating memory B cells may be maintained independently of long-lived plasma cells. We conclude that infrequent malaria infections are capable of inducing long-lived antibody and memory B cell responses.
Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we analysed malaria-specific CD4+ T cell responses of individuals living in an area of low malaria transmission in northern Thailand, who had had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. CD4+ T cell effector memory (CD45RO+) IFN-γ (24 hours ex vivo restimulation) and cultured IL-10 (6 day secretion into culture supernatant) responses to malaria schizont antigens were detected only in malaria-exposed subjects and were more prominent in subjects with long-lived antibodies or memory B cells specific to malaria antigens. The number of IFN-γ-producing effector memory T cells declined significantly over the 12 months of the study, and with time since last documented malaria infection, with an estimated half life of the response of 3.3 (95% CI 1.9–10.3) years. In sharp contrast, IL-10 responses were sustained for many years after last known malaria infection with no significant decline over at least 6 years. The observations have clear implications for understanding the immunoepidemiology of naturally acquired malaria infections and for malaria vaccine development.
In this study, the enzyme-linked immunosorbent assays (ELISA) were modified to detect 3-PBA in plasma (including the adducted form) and urine among a large group of consumers and farmers in an agricultural area. The samples were collected on the same day in the morning from 100 consumers (50 females, 50 males) and 100 farmers (50 females, 50 males) in the Fang district, Chiang Mai province, northern Thailand. The ELISA was very sensitive having an IC50 value of 26.7 and 15.3 ng/mL, a limit of quantitation of 5 and 2.5 ng/mL and a limit of detection of 1.08 and 1.94 ng/mL for plasma and urine, respectively. These methods had low (< 5%) intra- and inter-assay coefficients of variation. The extraction technique satisfactorily eliminated the matrix effect from samples before ELISA analysis, yielding good recoveries (85.9–99.4% and 87.3–98.0%, respectively). For the volunteer study, the detection rate for plasma 3-PBA was 24% in consumers and 42% in farmers, but the median and range values were similar (median 5.87 ng/mL, range 5.16–8.44 ng/mL in consumers and 6.27 ng/mL, range 4.29–9.57 ng/mL in farmers). The rate of detection in the urine was similar (76% and 69%, in consumers and in farmers), yet the median concentration was significantly higher in farmers (8.86 μg/g creatinine in consumers vs 16.1 μg/g creatinine in farmers) and the range also much wider in farmers (1.62–80.5 μg/g creatinine in consumers and 0.80–256.2 μg/g creatinine in farmers). There was no correlation between plasma 3-PBA and urinary 3-PBA concentrations in the study presumably because plasma 3-PBA is a measure of cumulative exposures while urinary 3-PBA reflects acute exposures. In addition, metabolism and excretion of pyrethroids varies by individual. Nevertheless, this study demonstrated that these volunteers were exposed to pyrethroids. To our knowledge, this is the first report that compared plasma 3-PBA and urinary 3-PBA in a large group of volunteers. The ELISA method provided higher sample throughput with lower cost as compared to the instrumental analysis.
Abstract. CD8+ and CD4 + T cells are involved in immunity to the pre-erythrocytic stage of malaria. This study has been undertaken to define T cell epitopes on the Plasmodium vivax circumsporozoite protein (CSP) and to analyze the early induction of immune response following infection. We identified CD4 + and CD8 + T epitopes recognized by different strains of mice as well as by humans. The CD4 + T cell response in mice was found to be similar in all strains, but variation between strains was evident. Five H-2 d -restricted CD8 + cytotoxic T lymphocyte (CTL) epitopes, but no H-2 k -or H-2 b -restricted epitopes, could be defined. Non-H-2 genes were also able to regulate the response. In recently infected Thai adults, poor immunoresponsiveness was demonstrated. CTL activity and proliferative responses of T cells from malaria-exposed donors were very low. In contrast, exposed individuals had specific antibodies against the immunodominant repeats of both common strains of the P. vivax CSP; however, titers decreased following treatment.
ABSTRACT. The aim of this study was to show that a 39-kDa protein or OmpH of Pasteurella multocida strain P-1059 is essential for cross protection. Strain PBA322, a thinly capsulated strain of P. multocida strain P-1059, was used as a live vaccine in chickens. Strain PBA322 is a thinly capsulated strain in comparison with the parental strain P-1059. Chickens were vaccinated by single injection and then challengeexposed with strains P-1059 or X-73 at two weeks post vaccination. Moreover, immune responses were also evaluated for both humoral and cellular immune response by ELISA and lymphocyte proliferation assay, respectively. The results showed that the live vaccine induced efficient immunity to protect chickens from challenge-exposure to the parent strain, but that the heterologous protection was poor. We concluded that the 39-kDa protein is essential for cross protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.