Elephant endotheliotropic herpesvirus (EEHV) is one of the most devastating viral infectious diseases in elephants worldwide. To date, it remains unclear how elephants get infected by the virus, where the virus persists, and what mechanisms drive the pathogenesis of the disease. The present study was aimed to develop an antibody against glycoprotein B (gB) of EEHV, investigate the EEHV tissue tropisms, and provide the possible routes of EEHV transmission in Asian elephants. Samples from elephant organs that had died from EEHV1A and EEHV4 infections, peripheral blood mononuclear cells (PBMC) from EEHV4- and non-EEHV-infected calves were used in this study. The results of western immunoblotting indicated that the antibody can be used for detection of gB antigens in both EEHV1A- and EEHV4-infected samples. Immunohistochemical detection indicated that the EEHV gB antigens were distributed mainly in the epithelial cells of the salivary glands, stomach and intestines. Immunofluorescence test of PBMC for EEHV gB in the EEHV4-infected calf indicated that the virus was observed predominantly in the mononuclear phagocytic cells. The findings in the present study unveil tissue tropisms in the EEHV1A- and EEHV4-infected calves and point out that saliva and intestinal content are likely sources for virus transmission in EEHV-infected Asian elephants.
Haemorrhagic septicemia (HS) is a contagious disease in cattle with high morbidity and mortality rates. HS vaccine in Thailand is an oil-adjuvant formulation, and is difficult to administer. The present study aimed to
formulate and evaluate the protection in dairy calves conferred by immunization with an in-house intranasal HS vaccine. The intranasal vaccine was formulated in a total volume of 500 µl containing either
50 or 100 µg of the recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain M-1404 (serovar B:2), and 10 µg of Cytosine-phosphate-guanosine
oligodeoxynucleotides (CpG-ODN) as a mucosal adjuvant. Intranasal immunizations were conducted three times at three-week intervals. The antibodies post-immunization were detected by indirect ELISA and demonstrated
efficient in vitro activity in suppressing a P. multocida strain from the complement-mediated killing assay. An intranasal vaccine induced both the serum IgG and secretory IgA levels
that were significantly higher than the level conferred by the parenteral vaccine (P<0.05). Challenge exposure was conducted with a P. multocida strain M-1404 at day 72 of the
experiments. The immunized calves had reduced clinical signs after challenge exposure that would normally result in disease proliferation. We conclude that intranasal vaccination of calves with rOmpH with CpG-ODN 2007
stimulated serum and secretory antibodies to rOmpH and whole cells of P. multocida strain M-1404 antigen. Moreover, it would result in protection in calves against artificial P.
multocida infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.