Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses, and is the key instigator of cell competition.
The term cell competition has been used to describe the phenomenon whereby particular cells can be eliminated during tissue growth only when more competitive cells are available to replace them. Multiple examples implicate differential activity of p53 in cell competition in mammals, but p53 has not been found to have the same role in Drosophila, where the phenomenon of cell competition was first recognized. Recent studies now show that Drosophila cells harboring mutations in Ribosomal protein (Rp) genes, which are eliminated by cell competition with wild type cells, activate a p53 target gene, Xrp1. In Diamond Blackfan Anemia, human Rp mutants activate p53 itself, through a nucleolar stress pathway. These results suggest a link between mammalian and Drosophila Rp mutants, translation, and cell competition.
The phosphorylation of the variant histone H2Ax (denoted γH2Ax; γH2Av in flies) constitutes an important signalling event in DNA damage sensing, ensuring effective repair by recruiting DNA repair machinery. In contrast, the γH2Av response has also been reported in dying cells, where it requires activation of caspase-activated DNases (CADs). Moreover, caspases are known to be required downstream of DNA damage for cell death execution. We show here, for the first time, that the initiator caspase Dronc acts as an upstream regulator of the DNA damage response (DDR) independently of executioner caspases by facilitating γH2Av signalling, possibly through a function that is not related to apoptosis. Such a γH2Av response is mediated by ATM rather than ATR, suggesting that Dronc function is required upstream of ATM. In contrast, the role of γH2Av in cell death requires effector caspases and is associated with fragmented nuclei. Our study uncovers a novel function of Dronc in response to DNA damage aimed at promoting DDR via γH2Av signalling in intact nuclei. We propose that Dronc plays a dual role that can either initiate DDR or apoptosis depending upon its level and the required threshold of its activation in damaged cells.This article has an associated First Person interview with the first author of the paper.
Ribosomal Protein (Rp) gene haploinsufficiency affects overall translation rate, leads to cell elimination by competition with wild type cells in mosaic tissues, and sometimes leads to accumulation of protein aggregates. The changes in ribosomal subunit levels observed are not sufficient for these effects, which all depend on the AT-hook, bZip domain protein Xrp1. In Rp+/− cells, Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was sufficient to reduce translation in, and also enable cell competition of, otherwise wild type cells. Unexpectedly, however, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. In all cases this was through the Xrp1 expression that was induced, placing Xrp1 as the downstream instigator of cell competition that also contributed to overall translation deficits. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Thus, Xrp1, which is shown here to be a sequence-specific transcription factor, is the master regulator that triggers cell competition and other consequences of multiple ribosomal stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.