Differentiating dengue patients from other acute febrile illness patients is a great challenge among physicians. Several dengue diagnosis methods are recommended by WHO. The application of specific laboratory tests is still limited due to high cost, lack of equipment, and uncertain validity. Therefore, clinical diagnosis remains a common practice especially in resource limited settings. Bayesian networks have been shown to be a useful tool for diagnostic decision support. This study aimed to construct Bayesian network models using basic demographic, clinical, and laboratory profiles of acute febrile illness patients to diagnose dengue. Data of 397 acute undifferentiated febrile illness patients who visited the fever clinic of the Bangkok Hospital for Tropical Diseases, Thailand, were used for model construction and validation. The two best final models were selected: one with and one without NS1 rapid test result. The diagnostic accuracy of the models was compared with that of physicians on the same set of patients. The Bayesian network models provided good diagnostic accuracy of dengue infection, with ROC AUC of 0.80 and 0.75 for models with and without NS1 rapid test result, respectively. The models had approximately 80% specificity and 70% sensitivity, similar to the diagnostic accuracy of the hospital’s fellows in infectious disease. Including information on NS1 rapid test improved the specificity, but reduced the sensitivity, both in model and physician diagnoses. The Bayesian network model developed in this study could be useful to assist physicians in diagnosing dengue, particularly in regions where experienced physicians and laboratory confirmation tests are limited.
Background
Thailand is among the top five countries with effective COVID-19 transmission control. This study examines how news of presence of COVID-19 in Thailand, as well as varying levels of government restriction on movement, affected human mobility in a rural Thai population along the border with Myanmar.
Methods
This study makes use of mobility data collected using a smartphone app. Between November 2019 and June 2020, four major events concerning information dissemination or government intervention give rise to five time intervals of analysis. Radius of gyration is used to analyze movement in each interval, and movement during government-imposed curfew. Human mobility network visualization is used to identify changes in travel patterns between main geographic locations of activity. Cross-border mobility analysis highlights potential for intervillage and intercountry disease transmission.
Results
Inter-village and cross-border movement was common in the pre-COVID-19 period. Radius of gyration and cross-border trips decreased following news of the first imported cases. During the government lockdown period, radius of gyration was reduced by more than 90% and cross-border movement was mostly limited to short-distance trips. Human mobility was nearly back to normal after relaxation of the lockdown.
Conclusions
This study provides insight into the impact of the government lockdown policy on an area with extremely low socio-economic status, poor healthcare resources, and highly active cross-border movement. The lockdown had a great impact on reducing individual mobility, including cross-border movement. The quick return to normal mobility after relaxation of the lockdown implies that close monitoring of disease should be continued to prevent a second wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.