Targeted environmental and ecosystem management remain crucial in control of dengue. However, providing detailed environmental information on a large scale to effectively target dengue control efforts remains a challenge. An important piece of such information is the extent of the presence of potential dengue vector breeding sites, which consist primarily of open containers such as ceramic jars, buckets, old tires, and flowerpots. In this paper we present the design and implementation of a pipeline to detect outdoor open containers which constitute potential dengue vector breeding sites from geotagged images and to create highly detailed container density maps at unprecedented scale. We implement the approach using Google Street View images which have the advantage of broad coverage and of often being two to three years old which allows correlation analyses of container counts against historical data from manual surveys. Containers comprising eight of the most common breeding sites are detected in the images using convolutional neural network transfer learning. Over a test set of images the object recognition algorithm has an accuracy of 0.91 in terms of F-score. Container density counts are generated and displayed on a decision support dashboard. Analyses of the approach are carried out over three provinces in Thailand. The container counts obtained agree well with container counts from available manual surveys. Multi-variate linear regression relating densities of the eight container types to larval survey data shows good prediction of larval index values with an R-squared of 0.674. To delineate conditions under which the container density counts are indicative of larval counts, a number of factors affecting correlation with larval survey data are analyzed. We conclude that creation of container density maps from geotagged images is a promising approach to providing detailed risk maps at large scale.
Background
Thailand is among the top five countries with effective COVID-19 transmission control. This study examines how news of presence of COVID-19 in Thailand, as well as varying levels of government restriction on movement, affected human mobility in a rural Thai population along the border with Myanmar.
Methods
This study makes use of mobility data collected using a smartphone app. Between November 2019 and June 2020, four major events concerning information dissemination or government intervention give rise to five time intervals of analysis. Radius of gyration is used to analyze movement in each interval, and movement during government-imposed curfew. Human mobility network visualization is used to identify changes in travel patterns between main geographic locations of activity. Cross-border mobility analysis highlights potential for intervillage and intercountry disease transmission.
Results
Inter-village and cross-border movement was common in the pre-COVID-19 period. Radius of gyration and cross-border trips decreased following news of the first imported cases. During the government lockdown period, radius of gyration was reduced by more than 90% and cross-border movement was mostly limited to short-distance trips. Human mobility was nearly back to normal after relaxation of the lockdown.
Conclusions
This study provides insight into the impact of the government lockdown policy on an area with extremely low socio-economic status, poor healthcare resources, and highly active cross-border movement. The lockdown had a great impact on reducing individual mobility, including cross-border movement. The quick return to normal mobility after relaxation of the lockdown implies that close monitoring of disease should be continued to prevent a second wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.