A major challenge in indexing unstructured hypertext databases is to automatically extract meta-data that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profile-based routing and filtering. Therefore, an accurate classifier is an essential component of a hypertext database. Hyperlinks pose new problems not addressed in the extensive text classification literature. Links clearly contain high-quality semantic clues that are lost upon a purely term-based classifier, but exploiting link information is non-trivial because it is noisy. Naive use of terms in the link neighborhood of a document can even degrade accuracy. Our contribution is to propose robust statistical models and a relaxation labeling technique for better classification by exploiting link information in a small neighborhood around documents. Our technique also adapts gracefully to the fraction of neighboring documents having known topics. We experimented with pre-classified samples from Yahoo! 1 and the US Patent Database 2 . In previous work, we developed a text classifier that misclassified only 13% of the documents in the well-known Reuters benchmark; this was comparable to the best results ever obtained. This classifier misclassified 36% of the patents, indicating that classifying hypertext can be more difficult than classifying text. Naively using terms in neighboring documents increased error to 38%; our hypertext classifier reduced it to 21%. Results with the Yahoo! sample were more dramatic: the text classifier showed 68% error, whereas our hypertext classifier reduced this to only 21%.
Parallelismwith irregular patterns of data, communica-
Reducing communication cost is crucial to achieving good performance on scalable parallel machines. This paper presents a new compiler algorithm for global analysis and optimization of communication in data-parallel programs. Our algorithm is distinct from existing approaches in that rather than handling loop-nests and array references one by one, it considers all communication in a procedure and their interactions under different placements before making a final decision on the placement of any communication. It exploits the flexibility resulting from this advanced analysis to eliminate redundancy, reduce the number of messages, and reduce contention for cache and communication buffers, all in a unified framework. In contrast, single loop-nest analysis often retains redundant communication, and more aggressive dataflow analysis on array sections can generate too many messages or cache and buffer contention. The algorithm has been implemented in the IBM pHPF compiler for High Performance Fortran. During compilation, the number of messages per processor goes down by as much as a factor of nine for some HPF programs. We present performance results for the IBM SP2 and a network of Sparc workstations (NOW) connected by a Myrinet switch. In many cases, the communication cost is reduced by a factor of two.
Estimating the partition function is a key but difficult computation in graphical models. One approach is to estimate tractable upper and lower bounds. The piecewise upper bound of Sutton et al. is computed by breaking the graphical model into pieces and approximating the partition function as a product of local normalizing factors for these pieces. The tree reweighted belief propagation algorithm (TRW-BP) by Wainwright et al. gives tighter upper bounds. It optimizes an upper bound expressed in terms of convex combinations of spanning trees of the graph. Recently, Globerson et al. gave a different, convergent iterative dual optimization algorithm TRW-GP for the TRW objective. However, in many practical applications, particularly those that train CRFs with many nodes, TRW-BP and TRW-GP are too slow to be practical. Without changing the algorithm, we prove that TRW-BP converges in a single iteration for associative potentials, and give a closed form for the solution it finds. The closed-form solution obviates the need for complex optimization. We use this result to develop new closed-form upper bounds for MRFs with arbitrary pairwise potentials. Being closed-form, they are much faster to compute than TRW-based bounds. We also prove similar convergence results for loopy belief propagation (LBP) and use it to obtain closedform solutions to the LBP pseudomarginals and approximation to the partition function for associative potentials. We then use recent results proved by Wainwright et al for binary MRFs to obtain closed-form lower bounds on the partition function. We then develop novel lower bounds for arbitrary associative networks. We report on experiments with synthetic and real-world graphs. Our new upper bounds are considerably tighter than the piecewise bounds in practice. Moreover, we can compute our bounds on several graphs where TRW-BP does not converge. Our novel lower bound, in spite of being closed-form and much faster to compute, outperforms more complicated popular algorithms for computing lower bounds like mean-field on densely connected graphs by wide margins although it does worse on sparsely connected graphs like chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.