We present a novel technique for verifying properties of data parallel GPU programs via test amplification. The key insight behind our work is that we can use the technique of static information flow to amplify the result of a single test execution over the set of all inputs and interleavings that affect the property being verified. We empirically demonstrate the effectiveness of test amplification for verifying race-freedom and determinism over a large number of standard GPU kernels, by showing that the result of verifying a single dynamic execution can be amplified over the massive space of possible data inputs and thread interleavings.
Reducing communication cost is crucial to achieving good performance on scalable parallel machines. This paper presents a new compiler algorithm for global analysis and optimization of communication in data-parallel programs. Our algorithm is distinct from existing approaches in that rather than handling loop-nests and array references one by one, it considers all communication in a procedure and their interactions under different placements before making a final decision on the placement of any communication. It exploits the flexibility resulting from this advanced analysis to eliminate redundancy, reduce the number of messages, and reduce contention for cache and communication buffers, all in a unified framework. In contrast, single loop-nest analysis often retains redundant communication, and more aggressive dataflow analysis on array sections can generate too many messages or cache and buffer contention. The algorithm has been implemented in the IBM pHPF compiler for High Performance Fortran. During compilation, the number of messages per processor goes down by as much as a factor of nine for some HPF programs. We present performance results for the IBM SP2 and a network of Sparc workstations (NOW) connected by a Myrinet switch. In many cases, the communication cost is reduced by a factor of two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.