Three out of four patients with PCa with a 18-F choline PET-CT-detected recurrence have low-volume disease, potentially amenable to local therapy. Patients with low-volume disease have a better prognosis as compared with their counterparts. Lymph node recurrence was the most dominant failure pattern.
Our results demonstrate that OPSCC patients with the KRAS-LCS6 variant have a better outcome and suggest that this variant may be used as a prognostic biomarker for OPSCC.
The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.
A robust Bayesian model for seemingly unrelated regression is proposed. By using heavy-tailed distributions for the likelihood, robustness in the response variable is attained. In addition, this robust procedure is combined with a diagnostic approach to identify observations that are far from the bulk of the data in the multivariate space spanned by all variables. The most distant observations are downweighted to reduce the effect of leverage points. The resulting robust Bayesian model can be interpreted as a heteroscedastic seemingly unrelated regression model. Robust Bayesian estimates are obtained by a Markov Chain Monte Carlo approach. Complications by using a heavy-tailed error distribution are resolved efficiently by representing these distributions as a scale mixture of normal distributions. Monte Carlo simulation experiments confirm that the proposed model outperforms its traditional Bayesian counterpart when the data are contaminated in the response and/or the input variables. The method is demonstrated on a real dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.