Seemingly unrelated regression models generalize linear regression models by considering multiple regression equations that are linked by contemporaneously correlated disturbances. Robust inference for seemingly unrelated regression models is considered. MM-estimators are introduced to obtain estimators that have both a high breakdown point and a high normal efficiency. A fast and robust bootstrap procedure is developed to obtain robust inference for these estimators. Confidence intervals for the model parameters as well as hypothesis tests for linear restrictions of the regression coefficients in seemingly unrelated regression models are constructed. Moreover, in order to evaluate the need for a seemingly unrelated regression model, a robust procedure is proposed to test for the presence of correlation among the disturbances. The performance of the fast and robust bootstrap inference is evaluated empirically in simulation studies and illustrated on real data.
Insurers are faced with the challenge of estimating the future reserves needed to handle historic and outstanding claims that are not fully settled. A well-known and widely used technique is the chain-ladder method, which is a deterministic algorithm. To include a stochastic component one may apply generalized linear models to the run-off triangles based on past claims data. Analytical expressions for the standard deviation of the resulting reserve estimates are typically difficult to derive. A popular alternative approach to obtain inference is to use the bootstrap technique. However, the standard procedures are very sensitive to the possible presence of outliers. These atypical observations, deviating from the pattern of the majority of the data, may both inflate or deflate traditional reserve estimates and corresponding inference such as their standard errors. Even when paired with a robust chain-ladder method, classical bootstrap inference may break down. Therefore, we discuss and implement several robust bootstrap procedures in the claims reserving framework and we investigate and compare their performance on both simulated and real data. We also illustrate their use for obtaining the distribution of one year risk measures.
The chain ladder method is a popular technique to estimate the future reserves needed to handle claims that are not fully settled. Since the predictions of the aggregate portfolio (consisting of different subportfolios) do not need to be equal to the sum of the predictions of the subportfolios, a general multivariate chain ladder (GMCL) method has already been proposed. However, the GMCL method is based on the seemingly unrelated regression (SUR) technique which makes it very sensitive to outliers. To address this issue, we propose a robust alternative that estimates the SUR parameters in a more outlier resistant way. With the robust methodology it is possible to automatically flag the claims with a significantly large influence on the reserve estimates. We introduce a simulation design to generate artificial multivariate run-off triangles based on the GMCL model and illustrate the importance of taking into account contemporaneous correlations and structural connections between the run-off triangles. By adding contamination to these artificial datasets, the sensitivity of the traditional GMCL method and the good performance of the robust GMCL method is shown. From the analysis of a portfolio from practice it is clear that the robust GMCL method can provide better insight in the structure of the data.
The chain ladder method is a popular technique to estimate the future reserves needed to handle claims that are not fully settled. Since the predictions of the aggregate portfolio (consisting of different subportfolios) in general differ from the sum of the predictions of the subportfolios, a general multivariate chain ladder (GMCL) method has already been proposed. However, the GMCL method is based on the seemingly unrelated regression (SUR) technique which makes it very sensitive to outliers. To address this issue a robust alternative is introduced which estimates the SUR parameters in a more outlier resistant way. With the robust methodology it is possible to detect which claims have an abnormally large influence on the reserve estimates. We introduce a simulation design to generate artificial multivariate run-off triangles based on the GMCL model and illustrate the importance of taking into account contemporaneous correlations and structural connections between the run-off triangles. By adding contamination to these artificial datasets, the sensitivity of the traditional GMCL method and the good performance of the robust GMCL method is shown. From the analysis of a portfolio from practice it is clear that the robust GMCL method can provide better insight in the structure of the data.
A robust Bayesian model for seemingly unrelated regression is proposed. By using heavy-tailed distributions for the likelihood, robustness in the response variable is attained. In addition, this robust procedure is combined with a diagnostic approach to identify observations that are far from the bulk of the data in the multivariate space spanned by all variables. The most distant observations are downweighted to reduce the effect of leverage points. The resulting robust Bayesian model can be interpreted as a heteroscedastic seemingly unrelated regression model. Robust Bayesian estimates are obtained by a Markov Chain Monte Carlo approach. Complications by using a heavy-tailed error distribution are resolved efficiently by representing these distributions as a scale mixture of normal distributions. Monte Carlo simulation experiments confirm that the proposed model outperforms its traditional Bayesian counterpart when the data are contaminated in the response and/or the input variables. The method is demonstrated on a real dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.