In this paper, a unique analysis method for sperm whale clicks based on Hilbert-Huang transform (HHT) is proposed. Four sperm whale click samples with durations of 10 ms (defined as click I), and four sperm whale click samples with durations of 5 ms (defined as click II) were illustrated. These click samples were recorded in the Mediterranean Sea by Centro Interdisciplinare di Bioacusticae Ricerche Ambientali, Università degli Studi di Pavia. The empirical mode decomposition method was used to decompose click I samples into seven intrinsic mode functions (IMFs) and one residue function (RF), and click II samples were decomposed into six IMFs and one RF. The average energy distributions of multiple IMFs and the single RF domain for click I and click II samples were explored using the HHT analysis method. The average energy-frequency representations were also investigated for the same click I and click II samples. The analysis results show that the energy-frequency characteristics of sperm whale clicks can be extracted and understood by applying several IMFs and one RF signal with a high-resolution analysis.
The purpose of this article is to analyze the towing operation problem and towage incomes of the Kaohsiung port in Taiwan, and then propose feasible improvement alternatives for making tugboat operations more smooth and efficient, solving the problem of port congestion, and enhancing the port’s navigational safety. First, by analyzing 23,336 sets of actual data of merchant vessels entering/exiting the port of Kaohsiung and the 28,787 sets of actual data of tugboat operation at the second channel of Kaohsiung port in 2017, we can understand the relationships among towing operations, merchant vessels, and towage income. Second, the scenario analysis associated with the concept of towage fee differentiation was applied to analyze the relationship between towing operations and tugboat revenues in various scenarios. Third, the study proposed feasible alternatives for improving the port congestion problem and enhancing tugboat operation effectiveness by using the Delphi method. We believe that the improvement alternatives and recommendations from this study are practical and feasible and can help in policy formation and decision-making of port tugboat operations in the future.
An LED Counter Beam Light (CBL) with a free surface secondary lens is proposed to enhance the safety and efficiency of tunnels. The secondary lens was designed and produced to be mounted on a 50 W white-light LED array to generate the targeted counter beam pattern, in order to meet the standards for enhanced tunnel road lighting of the CIE (Commission Internationale de l’Eclairage)—CIE 88:2004—in a trial tunnel lighting scheme. Through the simulation of a road tunnel in Northern Taiwan using the LiteStar four-dimensional software, it was shown that the proposed LED light can serve as a qualifying CBL to generate an average road tunnel surface luminance (Lav) of 182.76 cd/m2, which is better than the 138 cd/m2 that commercial High-Pressure Sodium (HPS) tunnel lights can provide and the 181 cd/m2 minimum stipulated in the CIE 88:2004 regulations. The results also show that the proposed LED light accomplishes a contrast revealing coefficient qc of 1.03, which is above the minimum regulatory level of 0.6 for a qualified CBL, as well as a luminance uniformity Uo of 0.89 (regulatory minimum, 0.4), longitudinal luminance uniformity UL of 0.99 (regulatory minimum, 0.6), and glare factor TI (threshold increment) of 7.24% (regulatory minimum, 15%). In order to test the feasibility of the LED CBL for future commercialization, the proposed LED CBL was prototyped and measured; the results demonstrate that an average road surface luminance (Lav) of 184.5 cd/m2, intensity of the luminance uniformity Uo of 0.7, intensity of the longitudinal luminance uniformity UL of 0.94, glare factor of 7.04%, and contrast revealing coefficient qc of 1.38 can be achieved, which are all above the levels required by the CIE 88:2004 regulations.
To enhance driving safety at night, a new freeform-surface street light luminaire was proposed and evaluated in this study that meets the requirements of the International Commission on Illumination (CIE) M3 class standard for road lighting. The luminaire was designed using simulations to optimize the location of the bulb according to the requirements of the standard. The light source IES file was experimentally obtained for the optimized luminaire prototype with a 150 W ceramic metal halide lamp using an imaging goniophotometer. The trial road lighting simulation results computed by the lighting software DIALux indicated that the proposed luminaire provided an average road surface brightness of 1.1 cd/m2 (compared to a minimum requirement of 1.0 cd/m2), a brightness uniformity of 0.41 (compared to a minimum requirement of 0.4), a longitudinal brightness uniformity of 0.64 (compared to a minimum requirement of 0.6), and a glare factor of 7.6% (compared to a maximum limit of 15%). The findings of the image goniophotometer tests were then confirmed by the results of a certified mirror goniophotometer test conducted by the Taiwan Accreditation Foundation (TAF). The results of this study can be used to provide improved street lighting designs to meet enhanced international standards.
In the field of vehicle lighting, due to the diode laser, its small size and high energy conversion efficiency, it can be effectively used as the headlight source of high beam. In recent years, it was adopted by European advanced car manufacturers as a new generation of automotive headlight lighting products. The current mature technology on the market is to extend the laser beam by means of reflection and to use a single high-power laser as the light source to meet the needs of surface lighting. In this research, we propose a new integrated optical design for an automotive headlight system with the rod lens, gradient-index lens (GRIN lens) and freeform lens to expand the laser beam. With regard to the diffusion of the beam by reflection and refraction, the liquid lens is used as a switch for the high beam and low beam lights to meet the needs of vehicle lighting functions and to use low-power diode lasers to synthesize the array light source. Compared with the 24-W LED headlight module available in the current market, the energy saved by this proposed optical design can increase efficiency by an average of 33%. The maximum illuminance is 56.6 lux in the high-beam mode, which is 18% higher than the standard value. Let the laser light meet the lighting requirements of regulatory standard values even beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.