The incidence of chronic obstructive pulmonary disease (COPD) has substantially increased in recent decade. Cigarette smoke (CS) is the most important risk factor in the development of COPD. In this study, we investigated the effects of melatonin on the development of COPD using a CS and lipopolysaccharide (LPS)-induced COPD model and cigarette smoke condensate (CSC)-stimulated NCI-H292 cells, a human mucoepidermoid carcinoma cell. On day 4, the mice were treated intranasally with LPS. The mice were exposed to CS for 1 hr per day (8 cigarettes per day) from day 1 to day 7. Melatonin (10 or 20 mg/kg) was injected intraperitoneally 1 hr before CS exposure. Melatonin markedly decreased the neutrophil count in the BALF, with reduction in the proinflammatory mediators and MUC5AC. Melatonin inhibited Erk phosphorylation and Sp1 expression induced by CS and LPS treatment. Additionally, melatonin decreased airway inflammation with a reduction in myeloperoxidase expression in lung tissue. In in vitro experiments, melatonin suppressed the elevated expression of proinflammatory mediators induced by CSC treatment. Melatonin reduced Erk phosphorylation and Sp1 expression in CSC-stimulated H292 cells. In addition, cotreatment of melatonin and Erk inhibitors significantly limited the proinflammatory mediators with greater reductions in Erk phosphorylation and Sp1 expression than that observed in H292 cells treated with Erk inhibitor alone. Taken together, melatonin effectively inhibited the neutrophil airway inflammation induced by CS and LPS treatment, which was closely related to downregulation of Erk phosphorylation. These findings suggest that melatonin has a therapeutic potential for the treatment of COPD.
Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease.
Mucus acts as a primary defense system in the airway against various stimuli. However, excess mucus production causes a reduction in lung function via limitation of the airflow in the airway of patients suffering from asthma or chronic obstructive pulmonary disease (COPD). In this study, we evaluated the effects of melatonin on the production of MUC5AC, a major constituent of the mucin that is secreted from the airway, using epidermal growth factor (EGF)-stimulated NCI-H292 cells, a human mucoepidermoid carcinoma cell line, and an ovalbumin (OVA)-induced asthma murine model. Melatonin treatment significantly reduced the mRNA and protein levels of MUC5AC and reduced interleukin (IL)-6 production in EGF-stimulated H292 cells. Melatonin markedly decreased the phosphorylation of MAPKs, including ERK1/2, JNK, and p-38, induced by EGF stimulation. These findings were consistent with the results using MAPK inhibitors. Particularly, co-treatment with melatonin and a MAPK inhibitor more effectively suppressed MAPK phosphorylation than treatment with a MAPK inhibitor alone, which resulted in a reduction in MUC5AC expression. In the asthma murine model, melatonin-treated mice exhibited a marked reduction in MUC5AC expression in the airway compared with the OVA-induced mice. These reductions were accompanied by reductions in proinflammatory cytokine production and inflammatory cell infiltration. Collectively, these findings indicate that melatonin effectively inhibits MUC5AC expression. These effects may be closely associated with the inhibition of MAPK phosphorylation. Furthermore, our study suggests that melatonin could represent a potential therapeutic for chronic airway diseases, such as asthma and COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.