The increasing demands for air-taxi operations together with the ambitious targets for reduced environmental impact have driven significant interest in alternative rotorcraft architectures and propulsion systems. The design of Hybrid-Electric Propulsion Systems (HEPSs) for rotorcraft is seen as being able to contribute to those goals. This work aims to conduct a comprehensive design and trade-off analysis of hybrid powerplants for rotorcraft, targeting enhanced payload-range capability and fuel economy. An integrated methodology for the design, performance assessment and optimal implementation of HEPSs for conceptual rotorcraft has been developed. A multi-disciplinary approach is devised comprising models for rotor aerodynamics, flight dynamics, HEPS performance and weight estimation. All models are validated using experimental or flight test data. The methodology is deployed for the assessment of a hybrid-electric tilt-rotor, modelled after the NASA XV-15. This work targets to provide new insight in the preliminary design and sizing of optimally designed HEPSs for novel tilt-rotor aircraft. The paper demonstrates that at present, current battery energy densities (250Wh/kg) severely limit the degree of hybridization if a fixed useful payload and range are to be achieved. However, it is also shown that if advancements in battery energy density to 500Wh/kg are realized, a significant increase in the level of hybridization and hence reduction of fuel burned and carbon output relative to the conventional configuration can be attained. The methodology presented is flexible enough to be applied to alternative rotorcraft configurations and propulsion systems.
The design of efficient, environmentally friendly and quiet powerplant for rotorcraft architectures constitutes a key enabler for Urban Air Mobility application. This work focuses on the development and application of a generic methodology for the design, performance and environmental impact assessment of a parallel hybrid-electric propulsion system, utilizing simple and advanced recuperated engine cycles. A simulation framework for rotorcraft analysis comprising models for rotor aerodynamics, flight dynamics and hybrid-electric powerplant performance is deployed for the design exploration and optimization of a hybrid-electric rotorcraft, modelled after the NASA XV-15, adapted for civil applications. Optimally designed powerplants for payload-range capacity, energy efficiency and environmental impact have been obtained. A comparative evaluation has been performed for the optimum designs. The respective trade-offs between engine, heat exchanger weight, thermal efficiency, as well as mission fuel burn and environmental impact have been quantified. It has been demonstrated that a recuperated gas turbine based hybrid-electric architecture may provide improvements of up to 6% in mission range capability without sacrificing useful load. At the same time, analyses performed for a representative 100 km mission suggest reductions in fuel burn and NOX emissions of up to 12.9% and 5.2% respectively. Analyses are carried at aircraft and mission level using realistic UAM mission scenarios.
An integrated engine cycle design methodology and mission assessment for parallel hybrid electric propulsion architectures are presented in this paper. The aircraft case study considered is inspired by Fokker 100, boosted by an electric motor on the low-pressure shaft of the gas turbine. The fuel burn benefits arising from boosting the low-pressure shaft are discussed for two different baseline engine technologies. A three-point engine cycle design method is developed to redesign the engine cycle according to the degree of hybridization. The integrated cycle design and power management optimization method is employed to identify potential fuel burn benefits from hybridization for multiple mission ranges. Genetic algorithm-based optimizer has been used to identify optimal power management strategies. The sensitivity of these mission results has also been analyzed for different assumptions on the electric powertrain. With 1 MW motor power and a battery pack of 2307 kg, a maximum of 3% fuel burn benefit can be obtained by retrofitting the gas turbine for 400 nm mission range. Optimizing the power management strategy can improve this fuel burn benefit by 0.2–0.3%. Redesigning the gas turbine and optimizing the power management strategy, finally provides a maximum fuel benefit of 4.2% on 400 nm. The results suggest that a high hybridization by power, low hybridization by energy, and ranges below 700 nm are the only cases where the redesigned hybrid electric aircraft has benefits in fuel burn and energy consumption relative to the baseline aircraft. Finally, it is found that the percentage of fuel burn benefits from the hybrid electric configuration increases with the improvement in engine technology.
Production engine pass-off testing is a compulsory technique adopted to ensure that each engine meets the required performance criteria before entering into service. Gas turbine performance analysis greatly supports this process and substantial economic benefits can be achieved if an effective and efficient analysis is attained. This paper presents the use of an integrated method to enable engine health assessment using real pass-off test data of production engines obtained over a year. The proposed method is based on a well-established diagnostic technique enhanced for a highly-complex problem of a three-spool turbofan engine. It makes use of a modified optimization algorithm for the evaluation of the overall engine performance in the presence of component degradation, as well as, sensor noise and bias. The developed method is validated using simulated data extracted from a representative adapted engine performance model. The results demonstrate that the method is successful for 82% of the fault scenarios considered. Next, the pass-off test data are analyzed in two stages. Initially, correlation and trend analyses are conducted using the available measurements to obtain diagnostic information from the raw data. Subsequently, the method is utilized to predict the condition of 264 production turbofan engines undergoing a compulsory pass-off test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.