The increasing demands for air-taxi operations together with the ambitious targets for reduced environmental impact have driven significant interest in alternative rotorcraft architectures and propulsion systems. The design of Hybrid-Electric Propulsion Systems (HEPSs) for rotorcraft is seen as being able to contribute to those goals. This work aims to conduct a comprehensive design and trade-off analysis of hybrid powerplants for rotorcraft, targeting enhanced payload-range capability and fuel economy. An integrated methodology for the design, performance assessment and optimal implementation of HEPSs for conceptual rotorcraft has been developed. A multi-disciplinary approach is devised comprising models for rotor aerodynamics, flight dynamics, HEPS performance and weight estimation. All models are validated using experimental or flight test data. The methodology is deployed for the assessment of a hybrid-electric tilt-rotor, modelled after the NASA XV-15. This work targets to provide new insight in the preliminary design and sizing of optimally designed HEPSs for novel tilt-rotor aircraft. The paper demonstrates that at present, current battery energy densities (250Wh/kg) severely limit the degree of hybridization if a fixed useful payload and range are to be achieved. However, it is also shown that if advancements in battery energy density to 500Wh/kg are realized, a significant increase in the level of hybridization and hence reduction of fuel burned and carbon output relative to the conventional configuration can be attained. The methodology presented is flexible enough to be applied to alternative rotorcraft configurations and propulsion systems.
A turbocharger retrofitting platform utilizing one-dimensional (1D) models for calculating turbomachinery components map and a fully coupled process for integration with the turbomachinery components and the diesel engine, is presented. The platform has been developed with two modes of operation, allowing the retrofitting process to become fully automatic. In the first mode, available turbocomponents are examined, in order to select the one that best matches the entire engine system, aiming to retain or improve the diesel engine efficiency. In the second mode, an optimization procedure is employed, in order to redesign the compressor to match the entire system in an optimum way. Dimensionless parameters are used as optimization variables, for a given compressor mass flow and power. A retrofitting case study is presented, where three retrofitting options are analyzed (compressor retrofit, turbocharger retrofit, and compressor redesign). In the first and second option, turbocharger retrofitting is carried out, using available turbocomponents. It is shown that initial performance cannot be reconstituted using off-the-self-solutions. In the third option, compressor designing is performed, using the optimization mode, in order to provide an improved retrofitting solution, aiming to at least reconstituting the original diesel engine performance. Finally, a CFD analysis is carried out, in order to validate the compressor optimization tool capability to capture the performance trends, based on geometry variation.
This paper assesses a parallel electric hybrid propulsion system utilizing simple and recuperated cycle gas turbine configurations. An adapted engine model capable to reproduce a turboshaft engine steady state and transient operation is built in Simcenter Amesim and used as a baseline for a recuperated engine. The transient operation of the recuperated engine is assessed for different values of heat exchanger effectiveness, quantifying the engine lag and the surge margin reduction which are results of the heat exchanger addition. An oil and gas (OAG) mission of a twin engine medium helicopter has been used for assessing the parallel hybrid configuration. The thermoelectric system brings a certain level of flexibility allowing for better engine utilization, thus first a hybrid configuration based on simple cycle gas turbine scaled down from the baseline engine is assessed in terms of performance and weight. Following the recuperated engine, thermoelectric power plant is assessed and the performance enhancement is compared against the simple cycle conventional and hybrid configurations. The results indicate that a recuperated gas turbine based thermo-electric power plant may provide significant fuel economy despite the increased weight. At the same time, the electric power train can be used to compensate for the reduced specific power and potentially for the throttle response change due to the heat exchanger addition.
This paper aims to assess the gas turbine operability and overall hybrid electric propulsion system performance for a parallel configuration applied to a 150 passenger single-aisle aircraft. Two arrangements are considered: one where the low pressure shaft is boosted and one where the high pressure shaft is boosted. For identifying limits in the hybridization strategy steady state and transient operation are considered and the hybridization effect on compressor operability is determined. Having established the electric power on-take limits with respect to gas turbine operation the systems performance at aircraft level is quantified for the relevant cases. Different power management strategies are applied for the two arrangements and for different power degrees of hybridization. The results indicate that despite the fact that pollutant emission and fuel consumption may improved for hybrid propulsion, this comes at the cost of reduced payload and operability margins. Boosting the low pressure shaft may give the highest engine performance benefits but with a significant weight penalty, while the low pressure compressor system operability is negatively affected. On the other hand boosting the high pressure shaft provides lower engine performance benefits but with smaller weight penalty and with less operability concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.