This paper assesses a parallel electric hybrid propulsion system utilizing simple and recuperated cycle gas turbine configurations. An adapted engine model capable to reproduce a turboshaft engine steady state and transient operation is built in Simcenter Amesim and used as a baseline for a recuperated engine. The transient operation of the recuperated engine is assessed for different values of heat exchanger effectiveness, quantifying the engine lag and the surge margin reduction which are results of the heat exchanger addition. An oil and gas (OAG) mission of a twin engine medium helicopter has been used for assessing the parallel hybrid configuration. The thermoelectric system brings a certain level of flexibility allowing for better engine utilization, thus first a hybrid configuration based on simple cycle gas turbine scaled down from the baseline engine is assessed in terms of performance and weight. Following the recuperated engine, thermoelectric power plant is assessed and the performance enhancement is compared against the simple cycle conventional and hybrid configurations. The results indicate that a recuperated gas turbine based thermo-electric power plant may provide significant fuel economy despite the increased weight. At the same time, the electric power train can be used to compensate for the reduced specific power and potentially for the throttle response change due to the heat exchanger addition.
An integrated engine cycle design methodology and mission assessment for parallel hybrid electric propulsion architectures are presented in this paper. The aircraft case study considered is inspired by Fokker 100, boosted by an electric motor on the low-pressure shaft of the gas turbine. The fuel burn benefits arising from boosting the low-pressure shaft are discussed for two different baseline engine technologies. A three-point engine cycle design method is developed to redesign the engine cycle according to the degree of hybridization. The integrated cycle design and power management optimization method is employed to identify potential fuel burn benefits from hybridization for multiple mission ranges. Genetic algorithm-based optimizer has been used to identify optimal power management strategies. The sensitivity of these mission results has also been analyzed for different assumptions on the electric powertrain. With 1 MW motor power and a battery pack of 2307 kg, a maximum of 3% fuel burn benefit can be obtained by retrofitting the gas turbine for 400 nm mission range. Optimizing the power management strategy can improve this fuel burn benefit by 0.2–0.3%. Redesigning the gas turbine and optimizing the power management strategy, finally provides a maximum fuel benefit of 4.2% on 400 nm. The results suggest that a high hybridization by power, low hybridization by energy, and ranges below 700 nm are the only cases where the redesigned hybrid electric aircraft has benefits in fuel burn and energy consumption relative to the baseline aircraft. Finally, it is found that the percentage of fuel burn benefits from the hybrid electric configuration increases with the improvement in engine technology.
This paper aims to develop an advanced three-shaft turbofan engine with ultra-high BPR for entry-into-service (EIS) 2050. The boundary approaching method is utilized to obtain the optimal engine for a series of engines with different fan diameters. Furthermore, the flight mission analysis was carried out to fully consider the engine performance and weight penalty. The optimum engine employs a 3.26m fan diameter with ultra-high BPR reaching 21.39. The corresponding SFC is 11.42 ((g/s)/kN) which is 3.88% lower than the 2.95m fan diameter engine. However, the weight penalty has offset part of the benefits and the block fuel reduction is 2.5%. Sensitivity analysis results reveal that the LPT efficiency plays a dominant role in engine performance. Afterwards, the effects of variable geometry are investigated including the blow-off valve (BOV), variable inlet guide vane (VIGV) and bypass variable area nozzle (VAN). Results show that combining the three measures would boost engine performance and save fuel. The designed schedule for the combination of VIGV, BOV and VAN has generated a reduction in block fuel, NOx, CO2 and H2O reaching 3.36%, 5.55%, 2.47% and 2.53 % respectively.
This paper aims to develop a robust design process by approaching the performance boundaries and evaluating the operability of the pursued geared turbofan engine with low specific thrust for EIS 2025. A two-spool direct-drive turbofan (DDTF) engine of EIS 2000 was improved according to aircraft specifications and technology boundaries in 2025. A series of optimized engines with consecutive fan diameters were established to seek the ideal engine by balancing SFC, weight and mission fuel burn. The fan diameter was proved to be a decisive factor for lowering SFC and energy usage. The cycle design optimization process achieved a thermal efficiency of approximately 52%, and a propulsive efficiency of 79.5%, which is 8.19% increase in propulsive efficiency by enlarging fan diameter from 1.6m to 1.9m. Meanwhile, the 1.9m-fan diameter engine achieved a reduction in SFC and fuel burn of 7.47% and 6.58% respectively which offers an overall reduction of 30.82% in block fuel burnt and CO2 emission compared to the DDTF engine. A feasibility check verified the viability of the designed optimum engine in terms of fan tip speed, stage loading and AN2. Dynamic simulation offered a deep understanding of transient behaviour and fundamental mechanism of the geared turbofan engine. An important aspect of this paper is the use of advanced CMC materials, which led to an improvement of 4.92% in block fuel burn and 2.93% in engine weight.
Presented in this paper are the outcomes from the evaluation of a distributed aircraft design environment, based on microservices and cloud computing. The evaluation was performed on a representative airframe-engine optimization case study, including the engine, wing aero-structural geometry, and high-lift devices.The (computational) design process involved multiple distributed design teams and design tools. The latter were implemented with different programming languages and deployed on the Azure cloud service. As a benchmark, the same case study was performed using the traditional email/document-based approach to design collaboration. Compared with the traditional collaboration, the cloudbased approach substantially reduced the time for design iterations between the design teams. This was mainly due to the fast remote access of models/tools on the cloud and automation of data exchange. Also, the exercise indicated that the cloud-based approach is more flexible with regard to orchestrating the computational workflows and optimization studies, while protecting the Intellectual Property (IP) of the collaborating partners. IntroductionThe design of complex systems such as modern aircraft involves the integration of multiple disciplines (sub-problems), such as aerodynamics, structures, propulsion, flight control, and so forth. The different disciplines require specialized Modelling and Simulation (M&S) capabilities,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.