Single photon emitters in solid-state crystals have received a lot of attention as building blocks for numerous quantum technology applications. Fluorescent defects in hexagonal boron nitride (hBN) stand out due to their high luminosity and robust operation at room temperature. The fabrication of identical emitters at pre-defined sites is still challenging, which hampers the integration of these defects in optical systems and electro-optical devices. Here, we demonstrate the localized fabrication of hBN emitter arrays by electron beam irradiation using a standard scanning electron microscope with deep sub-micron lateral precision. The emitters are created with a high yield and a reproducible spectrum peaking at 575 nm. Our measurements of optically detected magnetic resonance have not revealed any addressable spin states. Using density functional theory, we attribute the experimentally observed emission lines to carbon-related defects, which are activated by the electron beam. Our scalable approach provides a promising pathway for fabricating room temperature single photon emitters in integrated quantum devices.
Optical quantum technologies promise to revolutionize today’s information processing and sensors. Crucial to many quantum applications are efficient sources of pure single photons. For a quantum emitter to be used in such application, or for different quantum systems to be coupled to each other, the optical emission wavelength of the quantum emitter needs to be tailored. Here, we use density functional theory to calculate and manipulate the transition energy of fluorescent defects in the two-dimensional material hexagonal boron nitride. Our calculations feature the HSE06 functional which allows us to accurately predict the electronic band structures of 267 different defects. Moreover, using strain-tuning we can tailor the optical transition energy of suitable quantum emitters to match precisely that of quantum technology applications. We therefore not only provide a guide to make emitters for a specific application, but also have a promising pathway of tailoring quantum emitters that can couple to other solid-state qubit systems such as color centers in diamond.
Quantum emitters in solid-state crystals have recently attracted a lot of attention due to their simple applicability in optical quantum technologies. Color centers such as fluorescent defects hosted by diamond and hexagonal boron nitride (hBN) emit single photons at room temperature and can be used for nanoscale sensing. The atomic structure of the hBN defects, however, is not yet well understood. In this work, we fabricate an array of identical hBN emitters by localized electron irradiation. This allows us to correlate the dipole orientations with the host crystal axes. The angle of excitation and emission dipoles relative to the crystal axes are also calculated using density functional theory, which reveals characteristic angles for every specific defect. Moreover, we also investigate the temporal polarization dynamics and discover a mechanism of time-dependent polarization visibility and dipole orientation of color centers in hBN and diamond. This can be traced back to the excitation of excess charges in the local crystal environment. We therefore provide a promising pathway for the identification of color centers as well as important insight into the dynamics of solid-state quantum emitters.
A solid-state quantum emitter is a crucial component for optical quantum technologies, ideally with a compatible wavelength for efficient coupling to other components in a quantum network. It is essential to understand fluorescent defects that lead to specific emitters. In this Letter, we employ density functional theory (DFT) to demonstrate the calculations of the complete optical fingerprints of quantum emitters in hexagonal boron nitride. Our results suggest that instead of comparing a single optical property, like the zero-phonon line energy, multiple properties should be used when comparing simulations to the experiment. Moreover, we apply this approach to predict the suitability of using the emitters in specific quantum applications. We therefore apply DFT calculations to identify quantum emitters with a lower risk of misassignments and a way to design optical quantum systems. Hence, we provide a recipe for classification and generation of universal quantum emitters in future hybrid quantum networks.
Modern quantum technologies have matured such that they can now be used in space applications, e.g., long-distance quantum communication. Here, we present the design of a compact true single photon source that can enhance the secure data rates in satellite-based quantum key distribution scenarios compared to conventional laser-based light sources. Our quantum light source is a fluorescent color center in hexagonal boron nitride. The emitter is off-resonantly excited by a diode laser and directly coupled to an integrated photonic processor that routes the photons to different experiments performed directly on-chip: (i) the characterization of the single photon source and (ii) testing a fundamental postulate of quantum mechanics, namely the relation of the probability density and the wave function (known as Born's rule). The described payload is currently being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit. We can therefore evaluate the feasibility of true single photon sources and reconfigurable photonic circuits in space. This provides a promising route toward a high-speed quantum network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.