Color centers in solid state crystals have become a frequently used system for single photon generation, advancing the development of integrated photonic devices for quantum optics and quantum communication applications. In particular, defects hosted by two-dimensional (2D) hexagonal boron nitride (hBN) are a promising candidate for next-generation single photon sources, due to its chemical and thermal robustness and high brightness at room temperature. The 2D crystal lattice of hBN allows for a high extraction efficiency and easy integration into photonic circuits. Here we develop plasma etching techniques with subsequent high temperature annealing to reliably create defects. We show how different fabrication parameters influence the defect formation probability and the emitter brightness. A full optical characterization reveals 1 arXiv:1711.10246v2 [quant-ph] 5 Mar 2018 the higher quality of the created quantum emitters, represented by a narrow spectrum, short excited state lifetime and high single photon purity. We also investigated the photostability on short and very long timescales. We utilize a wet chemically-assisted transfer process to reliably transfer the single photon sources onto arbitrary substrates, demonstrating the feasibility for the integration into scalable photonic quantum information processing networks.
Sources of pure and indistinguishable single-photons are critical for near-future optical quantum technologies. Recently, color centers hosted by two-dimensional hexagonal boron nitride (hBN) have emerged as a promising platform for high luminosity room temperature single-photon sources. Despite the brightness of the emitters, the spectrum is rather broad and the single-photon purity is not sufficient for practical quantum information processing. Here, we report integration of such a quantum emitter hosted by hBN into a tunable optical microcavity. A small mode volume of the order of λ 3 allows us to Purcell enhance the fluorescence, with the observed excited state lifetime shortening. The cavity significantly narrows the spectrum and improves the single-photon purity by suppression of off-resonant noise. We explore practical applications by evaluating the performance of our single-photon source for quantum key distribution and quantum computing. The complete device is compact and implemented on a picoclass satellite platform, enabling future low-cost satellite-based long-distance quantum networks.
Characteristic for devices based on two-dimensional materials are their low size, weight and power requirements. This makes them advantageous for use in space instrumentation, including photovoltaics, batteries, electronics, sensors and light sources for long-distance quantum communication. Here we present a comprehensive study on combined radiation effects in Earth’s atmosphere on various devices based on these nanomaterials. Using theoretical modeling packages, we estimate relevant radiation levels and then expose field-effect transistors, single-photon sources and monolayers as building blocks for future electronics to γ-rays, protons and electrons. The devices show negligible change in performance after the irradiation, suggesting robust suitability for space use. Under excessive γ-radiation, however, monolayer WS2 shows decreased defect densities, identified by an increase in photoluminescence, carrier lifetime and a change in doping ratio proportional to the photon flux. The underlying mechanism is traced back to radiation-induced defect healing, wherein dissociated oxygen passivates sulfur vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.