The conventional drug delivery systems made from organic- or inorganic-based materials suffer from some problems associated with uncontrolled drug release, biocompatibility, cytotoxicity, and so forth. To overcome these problems, zeolitic imidazole framework (ZIF) hybrid materials can be one of the solutions. Here, we report a very easy and successful encapsulation of an anticancer drug doxorubicin inside two ZIFs, namely, ZIF-7 and ZIF-8, which are little explored as drug delivery systems, and we studied the controlled release of the drug from these two ZIFs under external stimuli such as change in pH and upon contact with biomimetic systems. Experimental results demonstrate that ZIF-7 remains intact when the pH changes from physiological condition to acidic condition, whereas ZIF-8 successfully releases drug under acidic condition. Interestingly, both the ZIFs are excellent for drug release when they come in contact with micelles or liposomes. In the case of ZIF-8, the drug delivery can be controlled for 3 h, whereas its analogue ZIF-7 delivers the drug for a time span of 10 h. We explained the reluctance of ZIF-7 toward drug release in terms of rigidity. This study highlights that by using different ZIFs and liposomes, the drug release rate can be easily modulated, which implies ample possibility for ZIFs as a good drug delivery system. The study shows a novel strategy for easy drug encapsulation and its release in a controlled manner, which will help future development of the drug delivery system.
The binding and detachment of carboxyl-modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl-modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold-nanoparticle-decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten-times-slower drug release compared to gold-nanoparticle-decorated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug-release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes.
Biocompatible liposomes were used for the first time to study the deintercalation process of a prominent anticancer drug, doxorubicin (DOX), from doxorubicin-intercalated DNA (DOX-DNA complex) under controlled experimental conditions. The study revealed that anionic liposomes (DMPG liposomes) appeared to be the most effective to bring in the highest percentage of drug release while cationic liposomes (DOTAP liposomes) scored the lowest percentage of release. The drug release was primarily attributed to the electrostatic interaction between liposomes and drug molecules. Apart from this interaction, changes in the hydrophobicity of the medium upon addition of liposomes to the DNA-drug solution accompanied by lipoplex formation between DNA and liposomes were also attributed to the observed deintercalation. The CD and the time-resolved rotational relaxation studies confirmed that lipoplex formation took place between liposomes and DNA owing to electrostatic interaction. The confocal study revealed that in the postrelease period, DOX binds with liposomes. The reason behind the binding is electrostatic interaction as well as the unique bilayer structure of liposomes which helps it to act as a "hydrophobic sink" for DOX. The study overall highlighted a novel strategy for deintercalation of drug using biocompatible liposomes, as the release of the drug can be controlled over a period of time by varying the concentration and composition of the liposomes.
In this article, we investigate the interactions of carboxyl-modified gold nanoparticles (AuC) with zwitterionic phospholipid liposomes of different chain lengths using a well-known membrane probe PRODAN by steady-state and time-resolved spectroscopy. We use three zwitterionic lipids, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which are widely different in their phase transition temperatures to form liposome-AuC assemblies. The steady-state and time-resolved studies indicate that the AuC brings in stability toward liposomes by local gelation. We observe that the bound AuC detach from the surface of the liposomes under pH ≈ 5 due to protonation of the carboxyl group, thus eliminating the electrostatic interaction between nanoparticles and head groups of liposomes. The detachment rate of AuC from the liposome-AuC assemblies is different for the aforementioned liposomes due to differences in their fluidity. We exploited the phenomena for the controlled release of a prominent anticancer drug Doxorubicin (DOX) under acidic conditions for different zwitterionic liposomes. The drug release rate was further optimized by coating of liposome-AuC assemblies with oppositely charged polymer (P), polydiallyldimethylammonium chloride, followed by a mixture of lipids L (DMPC:DMPG) and again with a polymer in a layer-by-layer fashion to obtain capsule-like structures. This system is highly stable for weeks, as confirmed by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM) imaging, and inhibits premature release. The layer coating was confirmed by hydrodynamic size and zeta potential measurements of the systems. The capsules obtained are of immense importance as they can control release of the drug from the systems to a large extent.
In this paper, we report the lipoplex-mediated deintercalation of anticancer drug doxorubicin (DOX) from the DOX-DNA complex under controlled experimental conditions. We used three zwitterionic liposomes, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), which are widely different in their phase transition temperatures to form a lipoplex with calf thymus DNA in the presence of Ca(2+) ions. The study revealed that DPPC being in sol-gel phase was more effective in releasing the drug from the DOX-DNA complex compared with liposomes that remain in liquid crystalline phase (DMPC and POPC). The higher extent of drug release in the case of DPPC liposomes was attributed to the stronger lipoplex formation with DNA as compared with that of other liposomes. Owing to the relatively smaller head group area, the DPPC liposomes in their sol-gel phase can absorb a larger number of Ca(2+) ions and hence offer a strong electrostatic interaction with DNA. This interaction was confirmed by time-resolved anisotropy and circular dichroism spectroscopy. Apart from the electrostatic interaction, the possible hydrophobic interaction between the liposomes and DNA was also taken into account for the observed deintercalation. The successful uptake of drug molecules by liposomes from the drug-DNA complex in the post-release period was also confirmed using confocal laser scanning microscopy (CLSM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.