BackgroundAn overlap of clinical symptoms between major depressive disorder (MDD) and social anxiety disorder (SAD) suggests that the two disorders exhibit similar brain mechanisms. However, few studies have directly compared the brain structures of the two disorders. The aim of this study was to assess the gray matter volume (GMV) and cortical thickness alterations between non-comorbid medication-naive MDD patients and SAD patients.MethodsHigh-resolution T1-weighted images were acquired from 37 non-comorbid MDD patients, 24 non-comorbid SAD patients and 41 healthy controls (HCs). Voxel-based morphometry analysis of the GMV (corrected with a false discovery rate of p < 0.001) and vertex-based analysis of cortical thickness (corrected with a clusterwise probability of p < 0.001) were performed, and group differences were compared by ANOVA followed by post hoc tests.OutcomesRelative to the HCs, both the MDD patients and SAD patients showed the following results: GMV reductions in the bilateral orbital frontal cortex (OFC), putamen, and thalamus; cortical thickening in the bilateral medial prefrontal cortex, posterior dorsolateral prefrontal cortex, insular cortex, left temporal pole, and right superior parietal cortex; and cortical thinning in the left lateral OFC and bilateral rostral middle frontal cortex. In addition, MDD patients specifically showed a greater thickness in the left fusiform gyrus and right lateral occipital cortex and a thinner thickness in the bilateral lingual and left cuneus. SAD patients specifically showed a thinner cortical thickness in the right precentral cortex.InterpretationOur results indicate that MDD and SAD share common patterns of gray matter abnormalities in the orbitofrontal-striatal-thalamic circuit, salience network and dorsal attention network. These consistent structural differences in the two patient groups may contribute to the broad spectrum of emotional, cognitive and behavioral disturbances observed in MDD patients and SAD patients. In addition, we found disorder-specific involvement of the visual processing regions in MDD and the precentral cortex in SAD. These findings provide new evidence regarding the shared and specific neuropathological mechanisms that underlie MDD and SAD.
The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.
IMPORTANCE Questions of whether and how cortical thickness (CTh) alterations differ over the course of schizophrenia (SCZ) have yet to be resolved. OBJECTIVE To characterize CTh alterations across illness stages in SCZ.DATA SOURCES PubMed, Embase, Web of Science, and Science Direct were screened for CTh studies published before June 15, 2021.STUDY SELECTION Original studies comparing whole-brain CTh alterations from healthy controls in individuals at clinical high-risk (CHR), first episode of psychosis (FEP), and long-term illness stages of SCZ were included.DATA EXTRACTION AND SYNTHESIS This preregistered systematic review and meta-analysis followed PRISMA reporting guidelines. Separate and pooled meta-analyses were performed using seed-based d mapping. Meta-regression analyses were conducted. MAIN OUTCOMES AND MEASURESCortical thickness differences from healthy control individuals across illness stages. RESULTS Ten studies comprising 859 individuals with CHR (mean [SD] age, 21.02 [2.66] years; male, 573 [66.7%]), 12 studies including 671 individuals with FEP (mean [SD] age, 22.87 [3.99] years; male, 439 [65.4%]), and 10 studies comprising 579 individuals with long-term SCZ (mean [SD] age, 41.58 [6.95] years; male, 396 [68.4%]) were included. Compared with healthy control individuals, individuals with CHR showed cortical thinning in bilateral medial prefrontal cortex (z = −1.01; P < .001). Individuals with FEP showed cortical thinning in right lateral superior temporal cortex (z = −1.34; P < .001), right anterior cingulate cortex (z = −1.44; P < .001), and right insula (z = −1.14; P = .002). Individuals with long-term SCZ demonstrated CTh reductions in right insula (z = −3.25; P < .001), right inferior frontal cortex (z = −2.19; P < .001), and left (z = −2.37; P < .001) and right (z = −1.94; P = .002) temporal pole. There were no significant CTh differences between CHR and FEP. Individuals with long-term SCZ showed greater cortical thinning in right insula (z = −2.58; P < .001), right inferior frontal cortex (z = −2.32; P < .001), left lateral temporal cortex (z = −1.91; P = .002), and right temporal pole (z = −1.82; P = .002) than individuals with FEP. Combining all studies on SCZ, accelerated age-related CTh reductions were found in bilateral lateral middle temporal cortex and right pars orbitalis in inferior frontal cortex. CONCLUSIONS AND RELEVANCEThe absence of significant differences between FEP and CHR noted in this systematic review and meta-analysis suggests that the onset of psychosis was not associated with robust CTh reduction. The greater cortical thinning in long-term SCZ compared with FEP with accelerated age-related reduction in CTh suggests progressive neuroanatomic alterations following illness onset. Caution in interpretation is needed because heterogeneity in samples and antipsychotic treatment may confound these results.
The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.