Large-area MoS(2) atomic layers are synthesized on SiO(2) substrates by chemical vapor deposition using MoO(3) and S powders as the reactants. Optical, microscopic and electrical measurements suggest that the synthetic process leads to the growth of MoS(2) monolayer. The TEM images verify that the synthesized MoS(2) sheets are highly crystalline.
Highly crystalline and large-area MoS 2 thin layers with good electrical performance can be obtained by the post-annealing of a thermally decomposed ammonium thiomolybdate layer in the presence of sulfur.
A major efficiency limit for solution-processed perovskite optoelectronic devices (e.g. light-emitting diodes, LEDs) is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures affect the passivation effectiveness. We show that the so far largely ignored hydrogen bonds play a critical role. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring the perovskite, we significantly enhance the interaction with defects sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near infrared perovskite LEDs (PeLEDs) with a record external quantum efficiency (EQE) of 21.6%. In addition, our passivated PeLEDs maintain a high EQE of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm-2 , making them more attractive than the most efficient organic and quantum-dot LEDs at high excitations.
A phototransistor based on a chemical vapor deposited (CVD) MoS2 monolayer exhibits a high photoresponsivity (2200 A W(-1) ) and an excellent photogain (5000). The presence of shallow traps contributes to the persistent photoconductivity. Ambient adsorbates act as p-dopants to MoS2 , decreasing the carrier mobility, photoresponsivity, and photogain.
Boundless Bio, Inc. (BB), and serve as consultants. V.B. is a co-founder, and has equity interest in Boundless Bio, inc. (BB) and Digital Proteomics, LLC (DP), and receives income from DP. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. BB and DP were not involved in the research presented here. Data Availability. Whole genome-, RNA-, ATAC-, MNase-, ChIP-, PLAC-Seq data are deposited in the NCBI Sequence Read Archive (BioProject: PRJNA506071). The source data files of the pixel quantification of ATAC-see on metaphase chromosome spread images to create Extended Data Figure 7d are available on Figshare (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.