Large-area MoS(2) atomic layers are synthesized on SiO(2) substrates by chemical vapor deposition using MoO(3) and S powders as the reactants. Optical, microscopic and electrical measurements suggest that the synthetic process leads to the growth of MoS(2) monolayer. The TEM images verify that the synthesized MoS(2) sheets are highly crystalline.
Highly crystalline and large-area MoS 2 thin layers with good electrical performance can be obtained by the post-annealing of a thermally decomposed ammonium thiomolybdate layer in the presence of sulfur.
Two-dimensional (2D) materials, such as molybdenum disulfide (MoS 2 ), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS 2 allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene's advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors and photodetectors made from few-layer MoS 2 show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multi-stage circuits and logic building blocks on MoS 2 to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between two to twelve transistors seamlessly integrated side-byside on a single sheet of bilayer MoS 2 . Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions. Keywords: molybdenum disulfide (MoS 2 ), transition metal dichalcogenides (TMD), Two-dimensional (2D)electronics, integrated circuits, ring oscillator.2 Two-dimensional (2D) materials, such as molybdenum disulfide (MoS 2 ) 1 and other members of the transition metal dichalcogenides family, represents the ultimate scaling of material dimension in the vertical direction. Nano-electronic devices built on 2D materials offer many benefits for further miniaturization beyond Moore's Law 2,3 and as a high-mobility option in the emerging field of large-area and low-cost electronics that is currently dominated by low-mobility amorphous silicon 4 and organic semiconductors 5,6 . MoS 2 , a 2D semiconductor material, is also attractive as a potential complement to graphene 7,8,9 for constructing digital circuits on flexible and transparent substrates, while its 1.8 eV bandgap 10,11 is advantageous over silicon for suppressing the source-to-drain tunneling at the scaling limit of transistors 12 . Molybdenum disulfide (MoS 2 ) is a layered semiconductor from the transition metal dichalcogenides material family (TMD), MX 2 (M=Mo, W; X=S, Se, Te) 10,11,19,20 . A single molecular layer of MoS 2 consists of a layer of Mo atoms sandwiched between two layers of sulfur atoms by covalent bonds 10 . The strong intra-layer covalent bonds confer MoS 2 crystals excellent mechanical strength, thermal stability up to 1090 C in inert environment 21 , and a surface free of dangling bonds. On the other hand, the weak inter-layer Van der Waal's force allows single-or fewlayer MoS 2 thin films to be created through micro-mechanical cleavage technique 22 and through anisotropic 2D 3 growth by chemical vapor deposition 23,24 . This unique property of MoS 2 , and 2D ...
We present a method for synthesizing MoS(2)/Graphene hybrid heterostructures with a growth template of graphene-covered Cu foil. Compared to other recent reports, (1, 2) a much lower growth temperature of 400 °C is required for this procedure. The chemical vapor deposition of MoS(2) on the graphene surface gives rise to single crystalline hexagonal flakes with a typical lateral size ranging from several hundred nanometers to several micrometers. The precursor (ammonium thiomolybdate) together with solvent was transported to graphene surface by a carrier gas at room temperature, which was then followed by post annealing. At an elevated temperature, the precursor self-assembles to form MoS(2) flakes epitaxially on the graphene surface via thermal decomposition. With higher amount of precursor delivered onto the graphene surface, a continuous MoS(2) film on graphene can be obtained. This simple chemical vapor deposition method provides a unique approach for the synthesis of graphene heterostructures and surface functionalization of graphene. The synthesized two-dimensional MoS(2)/Graphene hybrids possess great potential toward the development of new optical and electronic devices as well as a wide variety of newly synthesizable compounds for catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.