Hypoxia and adenosine are known to upregulate angiogenesis; however, the role of peroxisome proliferator-activated receptor alpha (PPARα) in angiogenesis is controversial. Using transgenic Tg(fli-1 :EGFP) zebrafish embryos, interaction of PPARα and adenosine receptors in angiogenesis were evaluated under hypoxic conditions. Epifluorescent microscopy was used to assess angiogenesis by counting the number of intersegmental (ISV) and dorsal longitudinal anastomotic vessels (DLAV) at 28 hours post-fertilization (hpf). Hypoxia (6h) stimulated angiogenesis as the number of ISV and DLAV increased by 18-fold (p<0.01) and 100±8 % (p<0.001), respectively, at 28 hpf. Under normoxic and hypoxic conditions, WY-14643 (10 µM), a PPARα activator, stimulated angiogenesis at 28 hpf, while MK-886 (0.5 µM), an antagonist of PPARα, attenuated these effects. Compared to normoxic condition, adenosine receptor activation with NECA (10 µM) promoted angiogenesis more effectively under hypoxic conditions. Involvement of A2B receptor was implied in hypoxia-induced angiogenesis as MRS-1706 (10 nM), a selective A2B antagonist attenuated NECA (10 µM)-induced angiogenesis. NECA- or WY-14643-induced angiogenesis was also inhibited by miconazole (0.1 µM), an inhibitor of epoxygenase dependent production of eicosatrienoic acid (EET) epoxide. Thus, we conclude that: activation of PPARα promoted angiogenesis just as activation of A2B receptors through an epoxide dependent mechanism.
This study was designed to evaluate the in vitro effects of transition heavy metal cations on activity of constitutive isoform of nitric oxide synthase (cNOS) in rat brain. NOS activity was determined in the cytosolic fractions of rat cerebral hemispheres by conversion of 3H-L-arginine to 3H-L-citrulline. Different concentrations of mercury (Hg2+), nickel (Ni2+), manganese (Mn2+), zinc (Zn2+), cadmium (Cd2+), lead (Pd2+) and calcium (Ca2+) were tested on NOS activity. While all the cations caused inhibition, there were differences in the apparent inhibition constants (Ki) among the cations. With the exception of calcium ion no other cation required preincubation with the enzyme preparation. These results indicate that while calcium ion modulate cNOS activity at regulatory site(s), inhibitory influence of toxic heavy metal cations may be exerted on the catalytic site(s) either by direct binding to it or by interfering with the electron transfer during catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.