Direct functionalization of heterocycles is an advanced strategy for diversifying privileged and biorelevent heterocycle-containing molecules. Particularly, the most abundant transition metal, iron, as a catalyst makes this process highly cost-effective and sustainable. Recently, some progress has been realized towards the direct functionalization of heterocycles under iron catalysis. Herein, we present the developments in the C–H bond functionalizations and related reactions of various heterocycles by abundant iron salts. This Synpacts is categorized into different sections based on heterocycles being functionalized, and each section is discussed based on the type of reaction catalyzed by iron.
Iron-catalyzed dimerization of various isatin derivatives is described for the efficient synthesis of 3,3'-biindolinylidene-diones (isoindigos). The reaction provides easy access to self-coupled and cross-coupled 3,3'-indolinylidene-diones that have high relevance to biology and materials. This Fe(0)or Fe(II)-catalyzed dimerization reaction tolerates a wide range of functionalities, such as fluoro, chloro, bromo, alkenyl, nitrile, ether, ester, pyrrolyl, indolyl and carbazolyl groups, including cyclic and acyclic alkyls as well as an alkyl-bearing fatty-alcohol moiety. Especially, the coupling between two distinct isatins provided excellent selectivity for the crossdimerization with trace of self-couplings. The single-crystal Xray diffraction study established the molecular structure of eight dimerized products. A preliminary mechanistic study of the Fe-catalyzed dimerization supported the radical pathway for the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.