Sequence-specific proteolysis is an important part of protein identification by MS. Digestion of protein is commonly performed in-solution, in sample vials with volumes ranging from milli- to microliters. When digestion is performed with a sample volume below 1 microL, handling of solution and potential sample loss via adsorption become significant issues. In this report, a proof of concept for the digestion of a small volume protein solution inside a capillary was demonstrated using a discontinuous buffer system previously studied (Nesbitt, C. A., et al. J. Chromatogr. A 2005, 1073, 175-180). Upon voltage application, a pH junction was created by the discontinuous buffer. Using myoglobin as an example, the protein molecules were enriched at the junction with an estimated volume of a few nanoliters. A protease, trypsin, was then introduced to myoglobin at the junction by coenrichment to induce in-capillary digestion. The voltage application was then suspended to provide the necessary time (2 h) for the proteolysis to proceed. When completed, voltage application was resumed, and the discontinuous buffer reconcentrated the peptides formed from digestion. Importantly, the refocused peptides appeared to roughly elute according to their pIs, resulting in a partial separation. Direct sample deposition from capillary was performed to facilitate mass spectral analysis by MALDI. The partial separation, according to pI, offered the potential benefits of MALDI MS signal enhancement and provided supplementary pI information for peptide identity assignment.
Advances in mass spectrometry and capillary-format separation continue to improve the sensitivity of protein analysis. Of equal importance is the miniaturization of sample pretreatment such as enrichment and proteolysis. In a previous report (Nesbitt et al., Electrophoresis, 2008, 29, 466-474), nanoliter-volume protein enrichment, tryptic digestion, and partial separation was demonstrated in capillary electrophoresis followed by MALDI mass spectral analysis. A discontinuous buffer system, consisting of ammonium (pH 10) and acetate (pH 4), was used to create a pH junction inside the capillary, trapping a protein with a neutral isoelectric point, myoglobin (pI 7.2). Moreover, co-enrichment of myoglobin with trypsin led to an in-capillary digestion. In this paper, the ability of this discontinuous buffer system to perform similar in-capillary sample pretreatment on proteins with moderately acidic and basic pI was studied and reported. Lentil lectin (pI 8.6) and a multi-phosphorylated protein, beta-casein (pI 5.1), were selected as model proteins. In addition to the previously shown tryptic digestion, proteolysis with endoproteinase Asp-N was also performed. Digestion of these acidic and basic pI proteins produced a few peptides with extreme pI values lying outside the trapping range of the discontinuous buffer. An alteration in the peptide trapping procedure was made to accommodate these analytes. Offline MALDI mass spectral analysis confirmed the presence of the expected peptides. The presented miniaturized sample pretreatment methodology was proven to be applicable on proteins with a moderately wide range of pI. Flexibility in the choice of protease was also evident.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.