high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km 2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.
Koyna, located in the Deccan Volcanic Province in western India, is the most significant site of reservoir triggered seismicity (RTS) globally. The largest RTS event of M 6.3 occurred here on December 10, 1967. RTS at Koyna has continued. This includes 22 M≥5.0 and thousands of smaller events over the past 50 years. The annual loading and unloading cycles of the Koyna Reservoir and the nearby Warna Reservoir influence RTS. Koyna provides an excellent natural laboratory to comprehend the mechanism of RTS because earthquakes here occur in a small area, mostly at depths of 2–7 km, which are accessible for monitoring. A deep borehole laboratory is therefore planned to study earthquakes in the near-field to understand their genesis, especially in an RTS environment. Initially, several geophysical investigations were carried out to characterize the seismic zone, including 5000 line kilometres of airborne gravity gradiometry and magnetic surveys, high-quality magnetotelluric data from 100 stations, airborne LiDAR surveys over 1064 km2, drilling of 8 boreholes of approximately 1500 m depth and geophysical logging. To improve the earthquake locations a unique network of borehole seismometers was installed in six of these boreholes. These results, along with a pilot borehole drilling plan, are presented here.
In the past few decades, numerous attempts have been made on modeling of salt tectonics and deciphering the geometry of salt domes, which is a key challenge in petroleum exploration. We have derived a 3D density model of the Wathlingen salt dome, situated in the southern part of the Northwest German Basin from joint modeling of reprocessed torsion balance measurements. Gravity, gravity gradients [Formula: see text], curvature derived from horizontal gravity gradients [Formula: see text], and horizontal directive tendency are jointly modeled to decipher the geometric structure of the salt dome. The model was constrained by geologic and borehole information. We found that the Wathlingen salt dome is a mushroom-structured salt body, which is 14-km long, 4–8-km wide extending up to [Formula: see text] depth. The top mushroom structure of the salt is horizontally spread up to [Formula: see text]. It would not have been possible to derive the complex 3D structure from modeling of gravity data alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.